Способы распространения семян. Реферат: Адаптация растений к окружающей среде Приспособление растений к окружающей среде

Реакции на неблагоприятные факторы среды только при некоторых условиях являются губительными для живых организмов, а в большинстве случаев они имеют адаптивное значение. Поэтому эти ответные реакции были названы Селье «общим адаптационным синдромом». В более поздних работах термины «стресс» и «общий адаптационный синдром» он употреблял как синонимы.

Адаптация — это генетически детерминированный процесс формирования защитных систем, которые обеспечивают повышение устойчивости и протекание онтогенеза в неблагоприятных для него условиях.

Адаптация является одним из важнейших механизмов, который повышает устойчивость биологической системы, в том числе растительного организма, в изменившихся условиях существования. Чем лучше организм адаптирован к какому-то фактору, тем он устойчивее к его колебаниям.

Генотипически обусловленная способность организма изменять метаболизм в определенных пределах в зависимости от действия внешней среды называется нормой реакции . Она контролируется генотипом и свойственна всем живым организмам. Большинство модификаций, которые возникают в пределах нормы реакции, имеют адаптивное значение. Они соответствуют изменениям среды обитания и обеспечивают лучшую выживаемость растений при колебаниях условии окружающей среды. В этой связи такие модификации имеют эволюционное значение. Термин «норма реакции» введен В.Л. Йогансеном (1909).

Чем больше способность вида или сорта модифицироваться в соответствии с окружающей средой, тем шире его норма реакции и выше способность к адаптации. Это свойство отличает устойчивые сорта сельскохозяйственных культур. Как правило, несильные и кратковременные изменения факторов внешней среды не приводят к существенным нарушениям физиологических функций растений. Это обусловлено их способностью сохранять относительное динамическое равновесие внутренней среды и устойчивость основных физиологических функций в условиях изменяющейся внешней среды. В то же время резкие и продолжительные воздействия приводят к нарушению многих функций растения, а нередко и к его гибели.

Адаптация включает в себя все процессы и приспособления (анатомические, морфологические, физиологические, поведенческие и др.), которые способствуют повышению устойчивости и способствуют выживанию вида.

1. Анатомо-морфологические приспособления . У некоторых представителей ксерофитов длина корневой системы достигает несколько десятков метров, что позволяет растению использовать грунтовую воду и не испытывать недостатка влаги в условиях почвенной и атмосферной засухи. У других ксерофитов наличие толстой кутикулы, опушенность листьев, превращение листьев в колючки уменьшают потери воды, что очень важно в условиях недостатка влаги.

Жгучие волоски и колючки защищают растения от поедания животными.

Деревья в тундре или на больших горных высотах имеют вид приземистых стелющихся кустарников, зимой они засыпаются снегом, который защищает их от сильных морозов.

В горных районах с большими суточными колебаниями температуры растения часто имеют форму распластанных подушек с плотно расположенными многочисленными стеблями. Это позволяет сохранять внутри подушек влагу и относительно равномерную в течение суток температуру.

У болотных и водных растений формируется специальная воздухоносная паренхима (аэренхима), которая является резервуаром воздуха и облегчает дыхание частей растения, погруженных в воду.

2. Физиолого-биохимические приспособления . У суккулентов приспособлением для произрастания в условиях пустынь и полупустынь является усвоение СО 2 в ходе фотосинтеза по CAM-пути. У этих растений устьица днем закрыты. Таким образом, растение сохраняет внутренние запасы воды от испарения. В пустынях вода является главным фактором, ограничивающим рост растений. Устьица открываются ночью, и в это время происходит поступление СО 2 в фотосинтезирующие ткани. Последующее вовлечение СО 2 в фотосинтетический цикл происходит днем уже при закрытых устьицах.

К физиолого-биохимическим приспособлениям относятся способность устьиц открываться и закрываться, в зависимости от внешних условий. Синтез в клетках абсцизовой кислоты, пролина, защитных белков, фитоалексинов, фитонцидов, повышение активности ферментов, противодействующих окислительному распаду органических веществ, накопление в клетках сахаров и ряд других изменений в обмене веществ содействует повышению устойчивости растений к неблагоприятным условиям внешней среды.

Одна и та же биохимическая реакция может осуществляться несколькими молекулярными формами одного и того же фермента (изоферментами), при этом каждая изоформа проявляет каталитическую активность в относительно узком диапазоне некоторого параметра окружающей среды, например температуры. Наличие целого ряда изоферментов позволяет растению осуществлять реакцию в значительно более широком диапазоне температур, по сравнению с каждым отдельным изоферментом. Это дает возможность растению успешно выполнять жизненные функции в изменяющихся температурных условиях.

3. Поведенческие приспособления, или избегание действия неблагоприятного фактора . Примером могут служить эфемеры и эфемероиды (мак, звездчатка, крокусы, тюльпаны, подснежники). Они проходят весь цикл своего развития весной за 1,5-2 месяца, еще до наступления жары и засухи. Таким образом, они как бы уходят, или избегают попадания под влияние стрессора. Подобным образом раннеспелые сорта сельскохозяйственных культур формируют урожай до наступления неблагоприятных сезонных явлений: августовских туманов, дождей, заморозков. Поэтому селекция многих сельскохозяйственных культур направлена на создание раннеспелых сортов. Многолетние растения зимуют в виде корневищ и луковиц в почве под снегом, защищающим их от вымерзания.

Адаптация растений к неблагоприятным факторам осуществляется одновременно на многих уровнях регуляции — от отдельной клетки до фитоценоза. Чем выше уровень организации (клетка организм, популяция) тем большее число механизмов одновременно участвует в адаптации растений к стрессам.

Регуляция метаболических и адаптационных процессов внутри клетки осуществляется с помощью систем: метаболической (ферментативной); генетической; мембранной. Эти системы тесно связаны между собой. Так, свойства мембран зависят от генной активности, а дифференциальная активность самих генов находится под контролем мембран. Синтез ферментов и их активность контролируются на генетическом уровне, в то же время ферменты регулируют нуклеиновый обмен в клетке.

На организменном уровне к клеточным механизмам адаптации добавляются новые, отражающие взаимодействие органов. В неблагоприятных условиях растения создают и сохраняют такое количество плодоэлементов, которое в достаточном количестве обеспечено необходимыми веществами, чтобы сформировать полноценные семена. Например, в соцветиях культурных злаков и в кронах плодовых деревьев в неблагоприятных условиях более половины заложившихся завязей могут опасть. Такие изменения основаны на конкурентных отношениях между органами за физиологически активные и питательные вещества.

В условиях стрессов резко ускоряются процессы старения и опадения нижних листьев. При этом нужные растениям вещества перемещаются из них в молодые органы, отвечая стратегии выживания организма. Благодаря реутилизации питательных веществ из нижних листьев сохраняются жизнеспособными более молодые — верхние листья.

Действуют механизмы регенерации утраченных органов. Например, поверхность ранения покрывается вторичной покровной тканью (раневой перидермой), рана на стволе или ветке зарубцовывается наплывами (каллюсами). При утрате верхушечного побега у растений пробуждаются спящие почки и усиленно развиваются боковые побеги. Весеннее восстановление листьев вместо опавших осенью — это также пример естественной регенерации органов. Регенерация как биологическое приспособление, обеспечивающее вегетативное размножение растений отрезками корня, корневища, слоевища, стеблевыми и листовыми черенками, изолированными клетками, отдельными протопластами, имеет большое практическое значение для растениеводства, плодоводства, лесоводства, декоративного садоводства и пр.

В процессах защиты и адаптации на уровне растения участвует и гормональная система. Например, при действии неблагоприятных условий в растении резко возрастает содержание ингибиторов роста: этилена и абсциссой кислоты. Они снижают обмен веществ, тормозят ростовые процессы, ускоряют старение, опадение органов, переход растения в состояние покоя. Торможение функциональной активности в условиях стресса под влиянием ингибиторов роста является характерной для растений реакцией. Одновременно с этим в тканях снижается содержание стимуляторов роста: цитокинина, ауксина и гиббереллинов.

На популяционном уровне присоединяется отбор, который приводит к появлению более приспособленных организмов. Возможность отбора определяется существованием внутрипопуляционной изменчивости устойчивости растений к разным факторам внешней среды. Примером внутрипопуляционной изменчивости по устойчивости может служить недружность появления всходов на засоленной почве и увеличение варьирования сроков прорастания при усилении действия стрессора.

Вид в современном представлении состоит из большого числа биотипов — более мелких экологических единиц, генетически одинаковых, но проявляющих разную устойчивость к факторам внешней среды. В различных условиях не все биотипы одинаково жизненны, и в результате конкуренции остаются лишь те из них, которые наиболее отвечают данным условиям. То есть, устойчивость популяции (сорта) к тому или иному фактору определяется устойчивостью составляющих популяцию организмов. Устойчивые сорта имеют в своем составе набор биотипов, обеспечивающих хорошую продуктивность даже в неблагоприятных условиях.

Вместе с тем, в процессе многолетнего культивирования у сортов изменяется состав и соотношение биотипов в популяции, что отражается на продуктивности и качестве сорта, часто не в лучшую сторону.

Итак, адаптация включает в себя все процессы и приспособления, повышающие устойчивость растений к неблагоприятным условиям среды (анатомические, морфологические, физиологические, биохимические, поведенческие, популяционные и др.)

Но для выбора наиболее эффективного пути адаптации главным является время, в течение которого организм должен приспособиться к новым условиям.

При внезапном действии экстремального фактора ответ не может быть отложен, он должен последовать незамедлительно, чтобы исключить необратимые повреждения растения. При длительных воздействиях небольшой силы адаптационные перестройки происходят постепенно, при этом увеличивается выбор возможных стратегий.

В этой связи различают три главные стратегии адаптации: эволюционные , онтогенетические и срочные . Задача стратегии — эффективное использование имеющихся ресурсов для достижения основной цели — выживания организма в условиях стресса. Стратегия адаптации направлена на поддержание структурной целостности жизненно важных макромолекул и функциональной активности клеточных структур, сохранение систем регуляции жизнедеятельности, обеспечение растений энергией.

Эволюционные, или филогенетические адаптации (филогенез — развитие биологического вида во времени) — это адаптации, возникающие в ходе эволюционного процесса на основе генетических мутаций, отбора и передающиеся по наследству. Они являются наиболее надежными для выживания растений.

У каждого вида растений в процессе эволюции выработались определенные потребности к условиям существования и приспособленность к занимаемой им экологической нише, стойкое приспособление организма к среде обитания. Влаголюбие и теневыносливость, жароустойчивость, холодоустойчивость и другие экологические особенности конкретных видов растений сформировались в результате длительного действия соответствующих условий. Так, теплолюбивые и короткодневные растения характерны для южных широт, менее требовательные к теплу и длиннодневные растения — для северных. Хорошо известны многочисленные эволюционные адаптации к засухе растений-ксерофитов: экономное расходование воды, глубоко залегающая корневая система, сбрасывание листьев и переход в состояние покоя и другие приспособления.

В этой связи сорта сельскохозяйственных растений проявляют устойчивость именно к тем факторам внешней среды, на фоне которых проводится селекция и отбор продуктивных форм. Если отбор проходит в ряде последовательных генераций на фоне постоянного влияния какого-либо неблагоприятного фактора, то устойчивость сорта к нему может быть существенно увеличена. Закономерно, что сорта селекции НИИ сельского хозяйства Юго-Востока (г. Саратов), более устойчивы к засухе, чем сорта, созданные в селекционных центрах Московской области. Таким же путем в экологических зонах с неблагоприятными почвенноклиматическими условиями сформировались устойчивые местные сорта растений, а эндемичные виды растений устойчивы именно к тому стрессору, который выражен в ареале их обитания.

Характеристика устойчивости сортов яровой пшеницы из коллекции Всероссийского института растениеводства (Семенов и др., 2005)

Сорт Происхождение Устойчивость
Энита Подмосковье Средне засухоустойчивый
Саратовская 29 Саратовская обл. Засухоустойчивый
Комета Свердловская обл. Засухоустойчивый
Каразино Бразилия Кислотоустойчивый
Прелюдия Бразилия Кислотоустойчивый
Колониас Бразилия Кислотоустойчивый
Тринтани Бразилия Кислотоустойчивый
ППГ-56 Казахстан Солеустойчивый
Ошская Киргизия Солеустойчивый
Сурхак 5688 Таджикистан Солеустойчивый
Мессель Норвегия Соленеустойчивый

В природной обстановке условия среды обычно изменяются очень быстро, и времени, в течение которого стрессовый фактор достигает повреждающего уровня, недостаточно для формирования эволюционных приспособлений. В этих случаях растения используют не постоянные, а индуцируемые стрессором защитные механизмы, формирование которых генетически предопределено (детерминировано).

Онтогенетические (фенотипические) адаптации не связаны с генетическими мутациями и не передаются по наследству. Формирование такого рода адаптаций требует сравнительно много времени, поэтому их называют долговременными адаптациями. Одним из таких механизмов является способность ряда растений формировать водосберегающий путь фотосинтеза CAM-типа в условиях водного дефицита, вызванного засухой, засолением, действием низких температур и других стрессорами.

Эта адаптация связана с индукцией экспрессии «неактивного» в нормальных условиях гена фосфоенолпируваткарбоксилазы и генов других ферментов CAM-пути усвоения СО 2 , с биосинтезом осмолитов (пролина), с активацией антиоксидантных систем и изменением суточных ритмов устьичных движений. Все это приводит к очень экономному расходованию воды.

У полевых культур, например, у кукурузы, аэренхима в обычных условиях произрастания отсутствует. Но в условиях затопления и недостатка в тканях кислорода в корнях у нее происходит гибель части клеток первичной коры корня и стебля (апоптоз, или программируемая смерть клеток). На их месте образуются полости, по которым кислород из надземной части растения транспортируется в корневую систему. Сигналом для гибели клеток является синтез этилена.

Срочная адаптация происходит при быстрых и интенсивных изменениях условий обитания. В основе ее лежит образование и функционирование шоковых защитных систем. К шоковым защитным системам относятся, например, система белков теплового шока, которая образуется в ответ на быстрое повышение температуры. Эти механизмы обеспечивают кратковременные условия выживания при действии повреждающего фактора и тем самым создают предпосылки для формирования более надежных долговременных специализированных механизмов адаптации. Примером специализированных механизмов адаптации является новообразование антифризных белков при низких температурах или синтез сахаров в процессе перезимовки озимых культур. Вместе с тем, если повреждающее действие фактора превышает защитные и репарационные возможности организма, то неминуемо наступает смерть. В этом случае организм погибает на этапе срочной или на этапе специализированной адаптации в зависимости от интенсивности и продолжительности действия экстремального фактора.

Различают специфические и неспецифические (общие) ответные реакции растений на стрессор.

Неспецифические реакции не зависят от природы действующего фактора. Они одни и те же при действии высокой и низкой температуры, недостатка или избытка влаги, высокой концентрации солей в почве или вредных газов в воздухе. Во всех случаях в клетках растений повышается проницаемость мембран, нарушается дыхание, возрастает гидролитический распад веществ, увеличивается синтез этилена и абсцизовой кислоты, тормозится деление и растяжение клеток.

В таблице представлен комплекс неспецифических изменений, протекающих у растений под влиянием различных факторов внешней среды.

Изменение физиологических параметров у растений под действием стрессовых условий (по Г.В, Удовенко, 1995)

Параметры Характер изменения параметров в условиях
засухи засоления высокой температуры низкой температуры
Концентрация ионов в тканях Растет Растет Растет Растет
Активность воды в клетке Падает Падает Падает Падает
Осмотический потенциал клетки Растет Растет Растет Растет
Водоудерживающая способность Растет Растет Растет
Водный дефицит Растет Растет Растет
Проницаемость протоплазмы Растет Растет Растет
Интенсивность транспирации Падает Падает Растет Падает
Эффективность транспирации Падает Падает Падает Падает
Энергетическая эффективность дыхания Падает Падает Падает
Интенсивность дыхания Растет Растет Растет
Фотофосфорилирование Снижается Снижается Снижается
Стабилизация ядерной ДНК Растет Растет Растет Растет
Функциональнаяя активность ДНК Снижается Снижается Снижается Снижается
Концентрация пролина Растет Растет Растет
Содержание водорастворимых белков Растет Растет Растет Растет
Синтетические реакции Подавлены Подавлены Подавлены Подавлены
Поглощение ионов корнями Подавлено Подавлено Подавлено Подавлено
Транспорт веществ Подавлен Подавлен Подавлен Подавлен
Концентрация пигментов Падает Падает Падает Падает
Деление клеток Тормозится Тормозится
Растяжение клеток Подавлено Подавлено
Число плодоэлементов Снижено Снижено Снижено Снижено
Старение органов Ускорено Ускорено Ускорено
Биологический урожай Понижен Понижен Понижен Понижен

Исходя из данных таблицы видно, что устойчивость растений к нескольким факторам сопровождается однонаправленными физиологическими изменениями. Это дает основание считать, что повышение устойчивости растений к одному фактору может сопровождаться повышением устойчивости к другому. Это подтверждено экспериментами.

Опытами в Институте физиологии растений РАН (Вл. В. Кузнецов и др.) показано, что кратковременная тепловая обработка растений хлопчатника сопровождается повышением их устойчивости к последующему засолению. А адаптация растений к засолению приводит к повышению их устойчивости к высокой температуре. Тепловой шок повышает способность растений приспосабливаться к последующей засухе и, наоборот, в процессе засухи повышается устойчивость организма к высокой температуре. Кратковременное воздействие высокой температурой повышает устойчивость к тяжелым металлам и УФ-Б облучению. Предшествующая засуха способствует выживанию растений в условиях засоления или холода.

Процесс повышения устойчивости организма к данному экологическому фактору в результате адаптации к фактору иной природы называется кросс-адаптацией .

Для изучения общих (неспецифических) механизмов устойчивости большой интерес представляет ответ растений на факторы, вызывающие у растений водный дефицит: на засоление, засуху, низкие и высокие температуры и некоторые другие. На уровне целого организма все растения реагируют на водный дефицит одинаково. Характерно угнетение роста побегов, усиление роста корневой системы, синтеза абсцизовой кислоты, снижение устьичной проводимости. Спустя некоторое время, ускоренно стареют нижние листья, и наблюдается их гибель. Все эти реакции направлены на снижение расходования воды за счет сокращения испаряющей поверхности, а также за счет увеличения поглотительной деятельности корня.

Специфические реакции — это реакции на действие какого-либо одного стрессового фактора. Так, фитоалексины (вещества со свойствами антибиотиков) синтезируются в растениях в ответ на контакт с болезнетворными микроорганизмами (патогенами).

Специфичность или не специфичность ответных реакций, подразумевает, с одной стороны, отношение растения к различным стрессорам и, с другой стороны, характерность реакций растений различных видов и сортов на один и тот же стрессор.

Проявление специфических и неспецифических ответных реакций растений зависит от силы стресса и скорости его развития. Специфические ответные реакции возникают чаще, если стресс развивается медленно, и организм успевает перестроиться и приспособиться к нему. Неспецифические реакции обычно возникают при более кратковременном и сильном действии стрессора. Функционирование неспецифических (общих) механизмов устойчивости позволяет растению избегать больших затрат энергии для формирования специализированных (специфических) механизмов адаптации в ответ на любое отклонение от нормы условий их обитания.

Устойчивость растений к стрессовому воздействию зависит от фазы онтогенеза. Наиболее устойчивы растения и органы растений в покоящемся состоянии: в виде семян, луковиц; древесные многолетние — в состоянии глубокого покоя после листопада. Наиболее чувствительны растения в молодом возрасте, так как в условиях стресса процессы роста повреждаются в первую очередь. Вторым критическим периодом является период формирования гамет и оплодотворения. Действие стресса в этот период приводит к снижению репродуктивной функции растений и снижению урожая.

Если стрессовые условия повторяются и имеют небольшую интенсивность, то они способствуют закаливанию растений. На этом основаны методы повышения устойчивости к низким температурам, жаре, засолению, повышенному содержанию в воздухе вредных газов.

Надежность растительного организма определяется его способностью не допускать или ликвидировать сбои на разных уровнях биологической организации: молекулярном, субклеточном, клеточном, тканевом, органном, организменном и популяционном.

Для предотвращения сбоев в жизнедеятельности растений под влиянием неблагоприятных факторов используются принципы избыточности , гетерогенности функционально равнозначных компонентов , системы репарации утраченных структур .

Избыточность структур и функциональных возможностей — один из основных способов обеспечения надежности систем. Избыточность и резервирование имеет многообразные проявления. На субклеточном уровне повышению надежности растительного организма способствуют резервирование и дублирование генетического материала. Это обеспечивается, например, двойной спиралью ДНК, увеличением плоидности. Надежность функционирования растительного организма в изменяющихся условиях поддерживается также благодаря наличию разнообразных молекул информационной РНК и образованию гетерогенных полипептидов. К ним относятся и изоферменты, которые катализируют одну и ту же реакцию, но отличаются по свои физико-химическим свойствам и устойчивостью структуры молекул в изменяющихся условиях среды.

На уровне клетки пример резервирования — избыток клеточных органелл. Так, установлено, что для обеспечения растения продуктами фотосинтеза достаточно части имеющихся хлоропластов. Остальные хлоропласты как бы остаются в резерве. То же касается и общего содержания хлорофилла. Избыточность проявляется также в большом накоплении предшественников для биосинтеза многих соединений.

На организменном уровне принцип избыточности выражается в образовании и в разновременной закладке большего, чем требуется для смены поколений, числа побегов, цветков, колосков, в огромном количестве пыльцы, семязачатков, семян.

На популяционном уровне принцип избыточности проявляется в большом числе особей, различающихся по устойчивости к тому или иному стрессовому фактору.

Системы репарации также работают на разных уровнях — молекулярном, клеточном, организменном, популяционном и биоценотическом. Репаративные процессы идут с затратой энергии и пластических веществ, поэтому репарация возможна только при сохранении достаточной интенсивности обмена веществ. Если обмен веществ прекращается, то прекращается и репарация. В экстремальных условиях внешней среды особенно большое значение имеет сохранение дыхания, так как именно дыхание обеспечивает энергией репарационные процессы.

Восстановительная способность клеток адаптированных организмов определяется устойчивостью их белков к денатурации, а именно устойчивостью связей, которые определяют вторичную, третичную и четвертичную структуру белка. Например, устойчивость зрелых семян к высоким температурам, как правило, связана с тем, что после обезвоживания их белки приобретают устойчивость к денатурации.

Главным источником энергетического материала как субстрата дыхания является фотосинтез, поэтому от устойчивости и способности фотосинтетического аппарата восстанавливаться после повреждений зависит энергообеспечение клетки и связанные с ним репарационные процессы. Для поддержания фотосинтеза в экстремальных условиях в растениях активизируется синтез компонентов мембран тилакоидов, происходит торможение окисления липидов, восстанавливается ультраструктура пластид.

На организменном уровне примером регенерации может служить развитие замещающих побегов, пробуждение спящих почек при повреждении точек роста.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1 . Адаптивный синдром у растений на действие стрессоров

Выделяют три основные группы факторов, вызывающих стресс у растений: физические -- недостаточная или избыточная влажность, освещенность, температура, радиоактивное излучение, механические воздействия; химические -- соли, газы, ксенобиотики (гербициды, инсектициды, фунгициды, промышленные отходы и др.); биологические -- поражение возбудителями болезней или вредителями, конкуренция е другими растениями, влияние животных, цветение, созревание плодов. совокупность адаптационных реакций организма, носящих общий защитный характер и возникающих в ответ на значительные по силе и продолжительности неблагоприятные воздействия -- стрессоры. Функциональное состояние, развивающееся под действием стрессоров, называется стрессом. Адаптационный синдром предложил канадский физиолог-эндокринолог Гансом Селье (1936). В развитии А. с. обычно выделяют 3 стадии. 1-я -- стадия тревоги -- продолжается от нескольких часов до 2 сут и включает две фазы -- шока и противошока, на последней из которых происходит мобилизация защитных реакций организма. Во время 2-й стадии А. с. -- стадии сопротивляемости -- устойчивость организма к различным воздействиям повышена. Эта стадия либо приводит к стабилизации состояния и выздоровлению, либо сменяется последней стадией А. с. -- стадией истощения, которая может окончиться гибелью организма.

В первую фазу наблюдаются значительные отклонения в физиолого-биохимических процессах, проявляются как симптомы повреждения, так и защитная реакция. Значение защитных реакций состоит в том, что они направлены на устранение (нейтрализацию) возникающих повреждений. Если воздействие слишком велико, организм погибает еще в стадии тревоги в течение первых часов. Если этого не случилось, реакция переходит во вторую фазу. Во второй фазе организм либо адаптируется к новым условиям существования, либо повреждения усиливаются. При медленном развитии неблагоприятных условий организм легче приспосабливается к ним. После окончания фазы адаптации растения нормально вегетируют в неблагоприятных условиях уже в адаптированном состоянии при общем пониженном уровне процессов. В фазу повреждения (истощения, гибели) усиливаются гидролитические процессы, подавляются энергообразующие и синтетические реакции, нарушается гомеостаз. При сильной напряженности стресса, превышающей пороговое для организма значение, растение гибнет. При прекращении действия стресс-фактора и нормализации условий среды включаются процессы репарации, т. е. восстановления или ликвидации повреждений. Адаптационный процесс (адаптация в широком смысле) протекает постоянно и осуществляет «настройку» организма изменениям внешней среды в пределах естественных колебаний факторов. Эти изменения могут носить как неспецифический, так и специфический характер. Неспецифическими являются однотипные реакции организма на действие разнородных стрессоров или разных организмов на один и тот же стресс-фактор. К специфическим относят ответные реакции, качественно отличающиеся в зависимости от фактора и генотипа. Важнейшей неспецифической реакцией клеток на действие стрессоров является синтез особых белков.

Стресс -- общая неспецифическая адаптационная реакция организма на действие любых неблагоприятных факторов. Выделяют три основные группы факторов, вызывающих стресс у растений: физические -- недостаточная или избыточная влажность, освещенность, температура, радиоактивное излучение, механические воздействия; химические -- соли, газы, ксенобиотики (гербициды, инсектициды, фунгициды, промышленные отходы и др.); биологические -- поражение возбудителями болезней или вредителями, конкуренция е другими растениями, влияние животных, цветение, созревание плодов.

2 . Типы адаптации у растений с примерами

Адаптация (приспособление) растения к конкретным условиям среды обеспечивается за счет физиологических механизмов (физиологическая адаптация), а у популяции организмов (вида) -- благодаря механизмам генетической изменчивости, наследственности и отбора (генетическая адаптация). Факторы внешней среды могут изменяться закономерно и случайно. Закономерно изменяющиеся условия среды (смена сезонов года) вырабатывают у растений генетическую приспособленность к этим условиям. Адаптация - это процесс приспособления живых организмов к определённым условиям внешней среды. Существуют следующие виды адаптации:

1. Адаптация к климатическим и другим абиотическим факторам (опадение листвы, холодостойкость хвойных деревьев).

2. Адаптация к добыванию пищи и воды (длинные корни растений в пустыне).

4. Адаптация, обеспечивающая поиск и привлечение партнёра у животных и опыление у растений (запах, яркий цвет у цветков).

5. Адаптация к миграциям у животных и распространение семян у растений (крылья у семян для переноса ветром, колючки у семя).

Различные виды растений обеспечивают устойчивость и выживание в неблагоприятных условиях тремя основными способами: с помощью механизмов, которые позволяют им избежать неблагоприятных воздействий (состояние покоя, эфемеры и др.); посредством специальных структурных приспособлений; благодаря физиологическим свойствам, позволяющим им преодолеть пагубное влияние окружающей среды.Однолетние сельскохозяйственные растения в умеренных зонах, завершая свой онтогенез в сравнительно благоприятных условиях, зимуют в виде устойчивых семян (состояние покоя). Многие многолетние растения зимуют в виде подземных запасающих органов (луковиц или корневищ), защищенных от вымерзания слоем почвы и снега. Плодовые деревья и кустарники умеренных зон, защищаясь от зимних холодов, сбрасывают листья.

Защита от неблагоприятных факторов среды у растений обеспечивается структурными приспособлениями, особенностями анатомического строения (кутикула, корка, механические ткани и т. д.), специальными органами защиты (жгучие волоски, колючки), двигательными и физиологическими реакциями, выработкой защитных веществ (смол, фитонцидов, токсинов, защитных белков).

К структурным приспособлениям относятся мелколистность и даже отсутствие листьев, воскообразная кутикула на поверхности листьев, их густое опущение и погруженность устьиц, наличие сочных листьев и стеблей, сохраняющих резервы воды, эректоидность или пониклость листьев и др. Растения располагают различными физиологическими механизмами, позволяющими приспосабливаться к неблагоприятным условиям среды. Это сам-тип фотосинтеза суккулентных растений, сводящий к минимуму потери воды и крайне важный для выживания растений в пустыне и т. д. способы выживания растений в степи

Известно, что для преобладающего большинства степных растений характерно развитие сильного опушения стеблей, листьев, а иногда даже цветков. Из-за этого степной травостой имеет тусклый, седоватый или сизоватый цвет, контрастирующий с яркой изумрудной зеленью луговых сообществ. Примерами широко распространенных видов растений с сизым восковым налетом могут служить многие представители рода молочай Уменьшению расхода воды способствует и общее сокращение испаряющей поверхности, что достигается за счет развития узких листовых пластинок у многих степных злаков и осок, которые к тому же в сухую погоду могут складываться вдоль, уменьшая испаряющую поверхность. Подобное свойство отмечено, в частности, у некоторых видов ковылей. Сокращение испаряющей поверхности у многих степных растений достигается также за счет сильно рассеченных листовых пластинок. Подобное явление можно наблюдать при сравнении многих близких видов зонтичных, а также у полыней из семейства сложноцветных. Ряд растений проблему нехватки влаги решает за счет развития глубоких корневых систем, позволяющих получать воду из более глубоких почвенных горизонтов и таким образом сохранять относительную независимость от резких изменений увлажненности, происходящих в течение вегетационного периода. В эту группу входят очень многие степные растения - люцерна, некоторые астрагалы, кермеки, также ряд видов из семейства сложноцветных

Способность растения переносить действие неблагоприятных факторов и давать в таких условиях потомство называется устойчивостью или стресс-толерантностью. Адаптация (лат. adaptio - приспособление, прилаживание) - это генетически детерминированный процесс формирования защитных систем, обеспечивающих повышение устойчивости и протекание онтогенеза в ранее неблагоприятных для него условиях. Адаптация включает в себя все процессы (анатомические, морфологические, физиологические, поведенческие, популяционные и др.) Однако ключевым фактором является время, предоставляемое организму для ответа. Чем больше времени предоставляется для ответа, тем больше выбор возможных стратегий.

При внезапном действии экстремального фактора ответ должен последовать незамедлительно. В соответствии с этим различают три главные стратегии адаптации: эволюционные, онтогенетические и срочные.

3 . Эволюционная адаптация у растений

Эволюционные (филогенетические) адаптации - это адаптации, возникающие в ходе эволюционного процесса (филогенеза) на основе генетических мутаций, отбора и передающиеся по наследству.

Примером служит анатомо-морфологические особенности растений, обитающих в засушливых жарких пустынях земного шара, а также на засоленных территориях (приспособленность к дефициту влаги). Биоритмы являются биологическими часами организма. Большинство биологических ритмов у растений, животных и человека выработалось в процессе эволюции жизни на Земле под воздействием различных факторов среды, прежде всего космических излучений, электромагнитных полей и др.

Филогенетическая адаптация -- это процесс, длящийся на протяжении жизней нескольких поколений, и уже поэтому, - она, по мнению Ю. Малова, не может быть свойством одного, отдельно взятого организма. Гомеостаз организма как основное свойство есть результат филогенетической адаптации. Однообразие представителей человеческого вида проявляется не в строгом сходстве морфологических и функциональных признаков отдельных индивидов, а в соответствии их внешним условиям окружающей среды. Различие в строении органов и тканей еще не есть отрицание нормы. Важно, соответствуют ли это строение и его функции вариациям внешней среды. Если структура соответствует колебаниям внешних факторов, значит, она обеспечивает жизнеспособность организма и определяет его здоровье. Содержание понятия адаптации охватывает не только способность живых систем отражать, посредством изменения, факторы среды, но и способность этих систем в процессе взаимодействия создавать в себе механизмы и модели активного изменения и преобразования среды, в которой они обитают.

4 . Онтогенетическая адаптация у растений

Онтогенетическая адаптация -- способность организма приспосабливаться в своем индивидуальном развитии к изменяющимся внешним условиям. Различают следующие подвиды:

генотипическая адаптация -- отбор наследственно детерминированной (изменение генотипа) повышенной приспособленности к измененным условиям (спонтанный мутагенез), фенотипическая адаптация -- при этом отборе изменчивость ограничена нормой реакции, определяемой стабильным генотипом.

Онтогенетические, или фенотипические, адаптации обеспечивают выживание данного индивида. Они связаны с генетическими мутациями и не передаются по наследству. Формирование такого рода приспособлений требует сравнительно много времени, поэтому их иногда называют долговременными адаптациями. Классическим примером подобных адаптаций является переход некоторых С3-растений на САМ-тип фотосинтеза, помогающий экономить воду, в ответ на засоление и жесткий водный дефицит.

Онтогенетическая адаптация -- способность организма приспосабливаться в своем индивидуальном развитии к изменяющимся внешним условиям. Различают следующие подвиды: генотипическая адаптация -- отбор наследственно детерминированной (изменение генотипа) повышенной приспособленности к измененным условиям (спонтанный мутагенез) фенотипическая адаптация -- при этом отборе изменчивость ограничена нормой реакции, определяемой стабильным генотипом. Онтогенетические, или фенотипические адаптации обеспечивают выживание данного индивида. Они связаны с генетическими мутациями и не передаются по наследству. Классическим примером подобных адаптаций является переход некоторых С3- растений на САМ-тип фотосинтеза, помогающий экономить воду, в ответ на засоление и жесткий водный дефицит. У растений источником адаптации могут быть и ненаследственные адаптивные реакции -- модификации. Онтогенез особи начинается с момента её образования. Этим событием особи может быть прорастание споры, образование зиготы, начало дробления зиготы, возникновение особи тем или иным путем при вегетативном размножении (иногда начало онтогенеза относят к образованию исходных клеток, например, оогоний). В ходе онтогенеза происходят рост, дифференцировка и интеграция частей развивающегося организма. Онтогенез особи может завершиться её физической смертью или её воспроизведением (в частности, при размножении путем деления). Каждый организм в период индивидуального развития представляет собой целостную систему, следовательно, и онтогенез - это целостный процесс, который не может быть разложен на простые составляющие части без потери качества. Степень возможной изменчивости в ходе реализации генотипа называется нормой реакции и выражается совокупностью возможных фенотипов при различных условиях среды. Это определяет так называемую онтогенетическую адаптацию, обеспечивающую выживание и репродукцию организмов иногда даже при значительных изменениях внешней среды. Влаголюбие и теневыносливость, жароустойчивость, холодоустойчивость и другие экологические особенности конкретных видов растений сформировались в ходе эволюции в результате длительного действия соответствующих условий. Так, теплолюбивые растения и растения короткого дня характерны для южных широт, менее требовательные к теплу и растения длинного дня - для северных.

5 . Срочная адаптация у растений

Срочная адаптация, в основе которой лежит образование и функционирование шоковых защитных систем, происходит при быстрых и интенсивных изменениях условий обитания. Эти системы обеспечивают лишь кратковременное выживание при повреждающем действии фактора и тем самым создают условия для формирования более надежных долговременных механизмов адаптации. К шоковым защитным системам относятся, например, система теплового шока, которая образуется в ответ на быстрое повышение температуры, или SOS-система, сигналом для запуска которой является повреждение ДНК.

Срочная адаптация -- немедленный ответ организма на воздействие внешнего фактора. Долговременная адаптация -- постепенно развивающийся ответ организма на действие внешнего фактора. Первый, начальный, обеспечивает несовершенную адаптацию. Он начинается с момента действия раздражителя и осуществляется на основе имеющихся функциональных механизмов (например усиление теплопродукции при охлаждении).

6 . Активная адаптация

Формирование защитных механизмов, при этом обязательным условием выживания является индукция синтеза ферментов с новыми свойствами или новых белков, обеспечивающих защиту клетки и протекание метаболизма в ранее непригодных для жизни условиях. Конечным результатом такой адаптации является расширение экологических границ жизни растения.

7 . Пассивная адаптация

- «уход» от повреждающего действия стрессора или сосуществование с ним. Этот тип адаптации имеет огромное значение для растений, поскольку в отличие от животных они не способны убежать или спрятаться от действия вредного фактора. К пассивным адаптациям относятся, например, переход в состояние покоя, способность растений изолировать «агрессивные» соединения, такие как тяжелые металлы в стареющих органах, тканях или в вакуолях, т.е. сосуществовать с ними. Настоящим «уходом» от действующего фактора является очень короткий онтогенез растений-эфемеров, позволяющий им сформировать семена до наступления неблагоприятных условий. Так, например, в ответ на повышение температуры воздуха растение «уходит» от действующего фактора, понижая температуру тканей за счет транспирации, и одновременно активно защищает клеточный метаболизм от высокой температуры, синтезируя белки теплового шока.

В процессе адаптации растение проходит два различных этапа:

1) быстрый первичный ответ;

2) значительно более длительный этап, связанный с формированием новых изоэнзимов или стрессорных белков, которые обеспечивают протекание метаболизма в изменившихся условиях.

Быстрая первичная реакция растения на повреждающее воздействие называется стресс-реакцией, а следующая за ней фаза - специализированной адаптацией. В случае прекращения действия стрессора растение переходит в состояние восстановления.

8 . Классификация растений в зависимости от их температурного оптимума

По степени адаптации растений к условиям крайнего дефицита тепла можно выделить три группы:

1) нехолодостойкие растения- сильно повреждаются или гибнут при температурах, еще не достигающих точки замерзания воды. Гибель связана с инактивацией ферментов, нарушением обмена нуклеиновых кислот и белков, проницаемости мембран и прекращением тока ассимилятов. Это растения дождевых тропических лесов, водоросли теплых морей;

2) неморозостойкие растения- переносят низкие температуры, но гибнут, как только в тканях начинает образовываться лед. При наступлении холодного времени года у них повышается концентрация осмотически активных веществ в клеточном соке и цитоплазме, что понижает точку замерзания до - (5-7)°С. Вода в клетках может охлаждаться ниже точки замерзания без немедленного образования льда. Переохлажденное состояние неустойчиво и длится чаще всего несколько часов, что, однако, позволяет растениям переносить заморозки. Таковы некоторые вечнозеленые субтропические растения - лавры, лимоны и др.;

3) льдоустойчивые, или морозоустойчивые, растения - произрастают в областях с сезонным климатом, с холодными зимами. Во время сильных морозов надземные органы деревьев и кустарников промерзают, но тем не менее сохраняют жизнеспособность, так как в клетках кристаллического льда не образуется. Растения подготавливаются к перенесению морозов постепенно, проходя предварительную закалку после того, как заканчиваются ростовые процессы. Закалка заключается в накоплении в клетках сахаров (до 20-30%), производных углеводов, некоторых аминокислот и других защитных веществ, связывающих воду. При этом морозоустойчивость клеток повышается, так как связанная вода труднее оттягивается образующимися во внеклеточных пространствах кристаллами льда.

Оттепели в середине, а особенно в конце зимы вызывают быстрое снижение устойчивости растений к морозам. После окончания зимнего покоя закалка утрачивается. Весенние заморозки, наступившие внезапно, могут повредить тронувшиеся в рост побеги и особенно цветки даже у морозоустойчивых растений.

По степени адаптации к высоким температурам можно выделить следующие группы растений:

1) нежаростойкие растения повреждаются уже при +(30-40)°С (эукариотические водоросли, водные цветковые, наземные мезофиты);

2) жаровыносливые растения переносят получасовое нагревание до +(50-60)°С (растения сухих местообитаний с сильной инсоляцией - степей, пустынь, саванн, сухих субтропиков и т. п.).

Некоторые растения регулярно испытывают влияние пожаров, когда температура кратковременно повышается до сотен градусов. Пожары особенно часты в саваннах, в сухих жестколистных лесах и кустарниковых зарослях типа чапарраля. Там выделяют группу растений-пирофитов, устойчивых к пожарам. У деревьев саванн на стволах толстая корка, пропитанная огнеупорными веществами, надежно защищающими внутренние ткани. Плоды и семена пирофитов имеют толстые, часто одревесневшие покровы, которые растрескиваются, будучи опалены огнем.

9 . Жароустойчивость растений

Жароустойчивость (жаровыносливость) -- способность растений переносить действие высоких температур, перегрев. Это генетически обусловленный признак. По жароустойчивости выделяют три группы растений.

Жаростойкие -- термофильные синезеленые водоросли и бактерии горячих минеральных источников, способные переносить повышение температуры до 75-100°С. Жароустойчивость термофильных микроорганизмов определяется высоким уровнем метаболизма, повышенным содержанием РНК в клетках, устойчивостью белка цитоплазмы к тепловой коагуляции.

Жаровыносливые -- растения пустынь и сухих мест обитания (суккуленты, некоторые кактусы, представители семейства Толстянковые), выдерживающие нагревание солнечными лучами до 50-65°С. Жароустойчивость суккулентов во многом определяется повышенными вязкостью цитоплазмы и содержанием связанной воды в клетках, пониженным обменом веществ.

Нежаростойкие -- мезофитные и водные растения. Мезофиты открытых мест переносят кратковременное действие температур 40-47°С, затененных мест -- около 40-42°С, водные растения выдерживают повышение температуры до 38-42°С. Из сельскохозяйственных наиболее жаровыносливы теплолюбивые растения южных широт (сорго, рис, хлопчатник, клещевина и др.).

Многие мезофиты переносят высокую температуру воздуха и избегают перегрева благодаря интенсивной транспирации, снижающей температуру листьев. Более жаростойкие мезофиты отличаются повышенной вязкостью цитоплазмы и усиленным синтезом жаростойких белков-ферментов.

Жароустойчивость во многом зависит от продолжительности действия высоких температур и их абсолютного значения. Большинство сельскохозяйственных растений начинает страдать при повышении температуры до 35-40°С. При этих и более высоких температурах нормальные физиологические функции растения угнетаются, а при температуре около 50°С происходят свертывание протоплазмы и отмирание клеток.

Превышение оптимального температурного уровня приводит к частичной или глобальной денатурации белков. Это вызывает разрушение белково-липидных комплексов плазмаллемы и других клеточных мембран, приводит к потере осмотических свойств клетки.

При действии высоких температур в клетках растений индуцируется синтез стрессовых белков (белков теплового шока). Растения сухих, светлых мест обитания более стойки к жаре, чем тенелюбивые.

Жароустойчивость в значительной степени определяется фазой роста и развития растений. Наибольший вред высокие температуры причиняют растениям на ранних этапах их развития, так как молодые, активно растущие ткани менее устойчивы, чем старые и «покоящиеся». Устойчивость к жаре у различных органов растений неодинаковая: менее устойчивы подземные органы, более -- побеги и почки.

10 . Физиолого-биохимические основы неспецифических и специфических реакций на стресс

Неспецифическими являются однотипные реакции организма на действие разнородных стрессоров или разных организмов на один и тот же стресс-фактор. К специфическим относят ответные реакции, качественно отличающиеся в зависимости от фактора и генотипа.

К первичным неспецифическим процессам, происходящим в клетках растений при действии любых стрессоров, относятся следующие:

1. Повышение проницаемости мембран, деполяризация мембранного потенциала плазмалеммы.

2. Вход ионов кальция в цитоплазму из клеточных стенок и внутриклеточных компартментов (вакуоль, эндоплазматическая сеть, митохондрии).

3. Сдвиг рН цитоплазмы в кислую сторону.

4. Активация сборки актиновых микрофиламентов цитоскелета, в результате чего возрастает вязкость и светорассеяние цитоплазмы.

5. Усиление поглощения кислорода, ускоренная трата АТФ, развитие свободнорадикальных процессов.

6. Повышение содержания аминокислоты пролина, которая может образовывать агрегаты, ведущие себя как гидрофильные коллоиды и способствующие удержанию воды в клетке. Пролин может связываться с белковыми молекулами, защищая их от денатурации.

7. Активация синтеза стрессовых белков.

8. Усиление активности протонной помпы в плазмалемме и, возможно, в тонопласте, препятствующей неблагоприятным сдвигам ионного гомеостаза.

9. Усиление синтеза этилена и абсцизовой кислоты, торможение деления и роста, поглотительной активности клеток и других физиологических процессов, осуществляющихся в обычных условиях.

11 . Показать генетическую последовательность реакций на стресс

Понятие специфичности и неспецифичности адаптивных реакций применяют, во-первых, определяя отношение организма (вида, сорта) к различным стрессорам, а во-вторых, характеризуя реакцию различных организмов (видов, сортов) на один и тот же стрессор. Важнейшей неспецифической реакцией клеток на действие стрессоров является синтез особых белков. Установлены гены, кодирующие белки и показано, что стресс индуцирует экспрессию целого ряда генов. Это позволяет судить, какие гены ответственны за устойчивость. Стрессовые белки синтезируются в растениях в ответ на различные воздействия: анаэробиоз, повышенные и пониженные температуры, обезвоживание, высокие концентрации соли, действие тяжелых металлов, вредителей, а также при раневых эффектах и ультрафиолетовой радиации. Стрессовые белки разнообразны и образуют группы высокомолекулярных и низкомолекулярных белков. Белки с одинаковой молекулярной массой представлены разными полипептидами. Это обусловлено тем, что каждую группу белков кодирует не один ген, а семейство близких генов. После завершения синтеза белка могут происходить различные модификации, например, обратимое фосфорилирование. Защитная роль стрессовых белков в растении подтверждается фактами гибели клетки при введении ингибиторов синтеза белка в период действия стрессора. С другой стороны изменения в структуре гена, повреждающие синтез белков, приводят к потере устойчивости клеток. В результате изменения действия фактора или факторов происходит переключение жизни клетки на стрессовую программу. Это осуществляется одновременно на многих уровнях регуляции. Тормозится экспрессия генов, активность которых характерна для жизни клетки в нормальных условиях, и активируются гены стрессового ответа. Активирование генов стресса происходит благодаря рецепции сигнала и соответствующей сигнальной цепи. Абиотические стресс-факторы (избыток солей, повышенная температура и др.) по-видимому, активируют рецепторы в плазматической мембране. Там начинается сигнальная цепь, которая через различные интермедиаты, такие как протеинкиназы, фосфатазы приводит к образованию транскрипционного фактора. Эти факторы в ядре активируют гены путем связывания со специфическими промоторами. Последовательность реакций следующая: стресс- сигнал -> рецептор в плазмалемме -> сигнальная цепь в цитозоле --> транскрипционный фактор в ядре --> промотор стресс-индуцированного гена ->мРНК -> белок -> защитная роль в растении.

12 . Что такое кросс-адаптация?

Перекрестные или кросс - адаптации это адаптации, при которых развитие устойчивости к одному фактору, повышает резистентность к сопутствующему.

13 . Классификация растений по отношению к свету. Примеры

По отношению к свету все растения, в том числе и лесные деревья подразделяются следующие экологические группы:

гелиофиты (светолюбивые), требующие много света и способные переносить лишь незначительное затенение (к светолюбивым относятся почти все кактусы и другие суккуленты, многие представители тропического происхождения, некоторые субтропические кустарники) сосна, пшеница, лиственница (мощная кутикула, много устьиц);

сциофиты (тенелюбивые)- довольствующиеся наоборот незначительным освещением и могущие существовать в тени (к теневыносливым относятся различные хвойные растения, многие папоротники, некоторые декоративно-лиственные растения);

теневыносливые (факультативные гелиофиты).

Гелиофиты. Световые растения. Обитатели открытых мест обитания: лугов, степей, верхних ярусов лесов, ранневесенние растения, многие культурные растения.

мелкие размеры листьев; встречается сезонный диморфизм: весной листья мелкие, летом - крупнее;

листья располагаются под большим углом, иногда почти вертикально;

листовая пластинка блестящая или густо опушенная;

образуют разряженные насаждения.

Сциофиты. Не выносят сильного света. Места обитания: нижние затемненные ярусы; обитатели глубоких слоев водоемов. Прежде всего, это растения, растущие под пологом леса (кислица, костынь, сныть).

Характеризуются следующими признаками:

листья крупные, нежные;

листья темно-зеленого цвета;

листья подвижные;

характерна так называемая листовая мозаика (то есть особое расположение листьев, при котором листья макимально не заслоняют друг друга).

Теневыносливые. Занимают промежуточное положение. Часто хорошо развиваются в условиях нормального освещения, но могут при этом переносить и затемнение. По своим признакам занимают промежуточное положение.

Причины этого различия нужно искать, прежде всего, в специфических особенностях хлорофилла, затем в различной архитектонике видов (в строении побегов, расположении и форме листьев). Распределив лесные деревья сообразно с их потребностью в свете, проявляющейся в их состязании, когда они растут вместе, и, ставя наиболее светолюбивые вперед, мы получим приблизительно следующие ряды.

1) Лиственница, береза, осина, ольха

2) ясень, дуб, вяз

3) ель, липа, граб, бук, пихта.

Замечательно и биологически важно обстоятельство, что почти все деревья в молодости могут переносить большее затенение, чем в более зрелом возрасте. Дальше следует заметить, что способность переносить затенение находится в известной зависимости от плодородия почвы.

Растения делят на:

1. длиннодневные 16-20 ч. длина дня - умеренных зона, северной широты,

2. короткодневные ночь равен дню - экваториальные широты,

3. нейтральные - клен американский, одуванчик лекарственный и др.

14 . Особенности теневыносливых растений и их характеристика

Теневыносливые растения, растения (главным образом древесные, многие травянистые под пологом лиственных пород, тепличные и др.), выносящие некоторое затенение, но хорошо развивающиеся и на прямом солнечном свету. Физиологически Т. р. характеризуются относительно невысокой интенсивностью фотосинтеза. Листья Т. р. имеют ряд анатомо-морфологических особенностей: слабо дифференцирована столбчатая и губчатая паренхима, клетки содержат небольшое число (10--40) хлоропластов, величина поверхности которых колеблется в пределах 2--6 см2 на 1 см2 площади листа. Ряд растений под пологом леса (например, копытень, сныть и др.) ранней весной, до распускания листьев древесного яруса, физиологически светолюбивы, а летом, при сомкнувшемся пологе, -- теневыносливы.

Теневыносливые растения -- растения, толерантные к затенению, произрастающие преимущественно в тенистых местообитаниях (в отличие от светолюбивых растений, гелиофитов), но также хорошо развивающиеся и на открытых участках с большим или меньшим количеством прямого солнечного света (в отличие от тенелюбивых растений, сциофитов). Теневыносливые растения рассматриваются в экологии растений как промежуточная группа между гелиофитами и сциофитами; их определяют как факультативные гелиофиты.

Особенности морфологии и физиологии теневыносливых растений

Мозаичное расположение листьев способствует лучшему улавливанию рассеянного света. Листья клёна сахарного

Теневыносливые растения характеризуются относительно невысокой интенсивностью фотосинтеза. Их листья по ряду важных анатомо-морфологических признаков отличаются от листьев гелиофитов. В листе теневыносливых растений обычно слабо дифференцирована столбчатая и губчатая паренхима; характерны увеличенные межклеточные пространства. Эпидермис довольно тонкий, однослойный, клетки эпидермиса могут содержать хлоропласты (чего никогда не встречается у гелиофитов). Кутикула обыкновенно тонкая. Устьица обычно размещены на обеих сторонах листа с несущественным преобладанием на оборотной стороне (у светолюбивых растений, как правило, на лицевой стороне устьица отсутствуют или расположены преимущественно на оборотной стороне). По сравнению с гелиофитами у теневыносливых растений значительно ниже содержание хлоропластов в клетках листа -- в среднем от 10 до 40 на клетку; суммарная поверхность хлоропластов листа ненамного превышает его площадь (в 2--6 раз; тогда как у гелиофитов превышение составляет в десятки раз).

Для некоторых теневыносливых растений характерно образование антоциана в клетках при произрастании на ярком солнце, что придаёт красноватую или буроватую окраску листьям и стеблям, нехарактерную в естественных условиях местообитания. У других при произрастании при прямом солнечном освещении отмечается более бледная окраска листьев.

Внешний облик теневыносливых растений также отличается от светолюбивых. Теневыносливые растения обычно обладают более широкими, более тонкими и мягкими листьями, чтобы улавливать больше рассеянного солнечного света. По форме они обычно плоские и гладкие (тогда как у гелиофитов часто встречается складчатость, бугорчатость листьев). Характерно горизонтальное расположение листвы (у гелиофитов листья нередко расположены под углом к свету) и листовая мозаика. Лесные травы обычно вытянуты, высоки, имеют удлинённый стебель.

Многие теневыносливые растения обладают высокой пластичностью своего анатомического строения в зависимости от освещённости (прежде всего это касается строения листьев). Например, у бука, сирени, дуба листья, образовавшиеся в тени, обыкновенно имеют существенные анатомические отличия от листьев, выросших при ярком солнечном освещении.

К теневыносливым относятся некоторые корнеплодные (редис, репа) и пряные растения (петрушка, мелисса, мята). Относительно теневынослива вишня обыкновенная (одно из немногих теневыносливых плодовых деревьев); теневыносливы некоторые ягодные кустарники (смородина, ежевика, некоторые сорта крыжовника) и травянистые растения (земляника садовая, брусника).

Некоторые теневыносливые растения -- ценные кормовые культуры. Выращиваемая для этих целей вика посевная используется к тому же ещё и в качестве сидерата.

15. Светолюбивые растения и их анатомо-физиологические особенности

Светолюбивые растения, гелиофиты, растения, произрастающие на открытых местах и не выносящие длительного затенения; для нормального роста им необходима интенсивная солнечная или искусственная радиация. Взрослые растения более светолюбивы, чем молодые. К С. р. относятся как травянистые (подорожник большой, кувшинка и др.), так и древесные (лиственница, акация и др.) растения, ранневесенние -- степей и полупустынь, а из культурных -- кукуруза, сорго, сахарный тростник и др. С. р. имеют ряд анатомо-морфологических и физиологических особенностей: относительно толстые листья с мелкоклеточной столбчатой и губчатой паренхимой и большим числом устьиц. В клетках листа содержится от 50 до 300 мелких хлоропластов, поверхность которых в десятки раз превышает поверхность листа. По сравнению с теневыносливыми растениями листья С. р. содержат больше хлорофилла на единицу поверхности и меньше -- на единицу массы листа. Характерный физиологический признак С. р. -- высокая интенсивность фотосинтеза, (гелиофиты).

Растения, не выносящие длительного затенения. Это растения открытых мест обитания: степные и луговые травы, наскальные лишайники, растения альпийских лугов, прибрежные и водные (с плавающими листьями), ранневесенние травянистые растения листопадных лесов.

К светолюбивым деревьям относятся: саксаул, гледичия, робиния лжеакация, альбиция, береза, лиственница, кедры атласский и ливанский, сосна обыкновенная, ясень обыкновенный, софора японская, шелковица белая, вяз приземистый, бархат амурский, орех грецкий, тополя черный и белый, осина, дуб обыкновенный; к кустарникам - лох узколистный, аморфа, олеандр и др. Более требовательны к свету рассечено листные, золотистые, бело пестролистные формы древесных пород и кустарников. У светолюбивых растений листья обычно мельче, чем у теневыносливых. Листовая пластинка у них расположена вертикально или под большим углом к горизонтальной плоскости, чтобы днем листья получали лишь скользящие лучи. Такое расположение листьев характерно для эвкалипта, мимозы, акации, многих степных травянистых видов. Поверхность листа блестящая (лавр, магнолия), покрыта светлым восковым налетом (кактусы, молочаи, толстянковые) или густо опушена, имеется толстая кутикула. Внутреннее строение листа отличается своими особенностями: палисадная паренхима хорошо развита не только на верхней, но и на нижней стороне листа, клетки мезофилла мелкие, без крупных межклетников, устьица мелкие, многочисленные. светолюбивые растения р. характеризуются высокой интенсивностью фотосинтеза, замедляя ростовые процессы, более чутко реагируют на недостаток света. Требовательность к свету изменяется с возрастом растения и зависит от условий внешней среды. Один и тот же вид более теневынослив в молодости. При перемещении (в культуре) древесной породы из теплых районов в более холодные потребность ее в свете увеличивается, на что влияют и условия питания растений. На плодородной почве растения могут развиваться с менее интенсивным освещением, на бедной почве потребность в свете возрастает.

16. Тенелюбивые растения и их анатомо-физиологические особенности

Растения, которые не выносят сильного освещения. К ним относятся, напр., многие лесные травы (кислица, майник и др.). При рубке леса, оказавшись на свету, они обнаруживают признаки угнетения и гибнут. Наибольшая интенсивность фотосинтеза наблюдается у таких растений при умеренном освещении.

17. Влияние температуры на рост и развитие растений. Классификация растений

Большинство сельскохозяйственных растений начинает страдать при повышении температуры до 35--40°С. При этих и более высоких температурах нормальные физиологические функции растения угнетаются, а при температуре около 50°С происходят свертывание протоплазмы и отмирание клеток. Превышение оптимального температурного уровня приводит к частичной или глобальной денатурации белков. Это вызывает разрушение белково-липидных комплексов плазмаллемы и других клеточных мембран, приводит к потере осмотических свойств клетки. В результате наблюдаются дезорганизация многих функций клеток, снижение скорости различных физиологических процессов. Так, при температуре 20°С все клетки проходят процесс митотического деления, при 38°С митоз отмечается в каждой седьмой клетке, а повышение температуры до 42°С снижает число делящихся клеток в 500 раз (одна делящаяся клетка на513 неделящихся). При максимальных температурах расход органических веществ на дыхание превышает его синтез, растение беднеет углеводами, а затем начинает голодать. Особенно резко это выражено у растений более умеренного климата (пшеница, картофель, многие огородные культуры).

Фотосинтез более чувствителен к действию высоких температур, чем дыхание. При субоптимальных температурах растения прекращают рост и фотоассимиляцию, что обусловлено нарушением деятельности ферментов, повышением дыхательного газообмена, снижением его энергетической эффективности, усилением гидролизаполимеров, в частности белка, отравлением протоплазмы вредными для растения продуктами распада (аммиак и др.). У жаростойких растений в этих условиях увеличивается содержание органических кислот, связывающих избыточный аммиак.

Способом защиты от перегрева может служить усиленная транспирация, обеспечиваемая мощной корневой системой. В результате транспирации температура растений снижается иногда на 10--15°С. Завядающие растения, с закрытыми устьицами, легче погибают от перегрева, чем достаточно снабженные водой. Растения сухую жару переносят легче, чем влажную, так как во время жары при высокой влажности воздуха регуляция температуры листьев за счет транспирации ограничена.

Повышение температуры особенно опасно при сильной инсоляции. Для уменьшения интенсивности воздействия солнечного света растения располагают листья вертикально, параллельно его лучам (эректоидно). При этом хлоропласты активно перемещаются в клетках мезофилла листа, как бы уходя от избыточной инсоляции. Растения выработали систему морфологических и физиологических приспособлений, защищающих их от тепловых повреждений: светлую окраску поверхности, отражающую инсоляцию; складывание и скручивание листьев; опушения или чешуйки, защищающие от перегрева глубжележащие ткани; тонкие слои пробковой ткани, предохраняющие флоэму и камбий; большую толщину кутикулярного слоя; высокое содержание углеводов и малое -- воды в цитоплазме и др.В полевых условиях особенно губительно совместное действие высоких температур и обезвоживания. При длительном и глубоком завядании угнетаются не только фотосинтез, но и дыхание, что вызывает нарушение всех основных физиологических функций растения. Наибольший вред высокие температуры причиняют растениям на ранних этапах их развития, так как молодые, активно растущие ткани менее устойчивы, чем старые и «покоящиеся».Устойчивость к жаре у различных органов растений неодинаковая: менее устойчивы подземные органы, более -- побеги и почки. На тепловой стресс растения очень быстро реагируют индуктивной адаптацией. В период образования генеративных органов жаростойкость однолетних и двулетних растений снижается. Вредное действие повышенных температур -- одна из важнейших причин значительного снижения урожаев ранних яровых при запаздывании с их посевом. Например, у пшеницы в фазе кущения в конусе нарастания идет дифференциация колосков. Высокая температура почвы и воздуха приводит к повреждению конуса нарастания, ускоряет процесс и сокращает время прохождения IV--V этапов, в результате уменьшается число колосков в колосе, а также число цветков в колоске, что приводит к снижению урожая.

Развитие растений, их рост и другие физиологические процессы совершаются в определенных температурных условиях. При этом каждый вид растения имеет температурные минимумы, оптимумы и максимумы для каждого физиологического процесса. Поэтому тепло является важным экологическим фактором, определяющим жизнь отдельного растения, распределение видов растений по земной поверхности, формирование типов растительности.

Для каждого вида растений нужно различать две температурные границы: минимальную и максимальную, т. е. такие температуры, при которых прекращаются жизненные процессы в растениях, и оптимальную температуру, наиболее благоприятную для жизнедеятельности растений. Для различных физиологических процессов (фотосинтез, дыхание, рост) у одного и того же вида растения положение этих границ неодинаково. Различно оно и для фенологических фаз у древесных пород. Например, рост побегов у ели и пихты начинается при температуре от +7 до +10°, а цветение - при более высоких температурах, выше +10°. Такие породы, как ольха, осина, лещина, ива, цветут при более низких температурах, а рост побегов у них происходит значительно позже при более высоких температурах.

Для всех жизненных процессов растений характерно, что оптимальные температуры для них ближе к максимальным, чем к минимальным. Если рост у сосны происходит в температурных пределах от +7 до +34°, то оптимальной является температура от + 25 до +28°.

Семена многих растений, в том числе и древесных, для своевременного нормального прорастания требуют предварительного воздействия на них низких температур. На этом принципе основана стратификация семян некоторых древесных растений: ясеня, липы, бересклета, боярышника. Также быстрее происходит после действия низких температур распускание листовых и цветочных почек у древесных растений.

Более высокую температуру лучше переносят растения, если они содержат мало воды (особенно семена и споры растений) или если они находятся в состоянии покоя (растения пустынь).

Защитой от перегрева растений является транспирация, которая существенно понижает температуру тела растения. Накопление в клетках растений солей также повышает устойчивость их протоплазмы к свертыванию под действием высокой температуры. Это особенно распространено у растений пустынь (саксаул, солянка). У всходов и однолетних сеянцев древесных растений высокая температура, кроме высушивания, вызывает иногда опал шейки корня.

Минимальная температура имеет большую амплитуду для различных видов растений. Так, некоторые тропические растения повреждаются от холода уже при температуре +5°, а ниже нуля гибнут (например, некоторые орхидеи). Причиной гибели растений от холода является главным образом потеря клетками воды. Образовавшиеся в межклетниках кристаллы льда вытягивают из клеток воду, иссушая их и разрушая. Поэтому растения и их части, содержащие мало воды, лучше переносят низкие температуры (например, лишайники, сухие семена и споры растений).

Во многих случаях для растения вредна не сама низкая температура, которая приводит к замерзанию, а быстрое оттаивание или чередование оттаивания с замерзанием. Однако некоторые растения, например сфагновые мхи, хотя и содержат в себе много воды, могут быстро замерзать и оттаивать без вреда для жизни.

Очень низкие зимние температуры (-40 - 45°) одни древесные породы переносят без вреда (сосна, лиственница, кедр сибирский, береза, осина), другие породы повреждаются. При этом характер и степень повреждения бывают различными. У ели европейской частично или полностью повреждается однолетняя хвоя и даже покоящиеся почки. У дуба, ясеня, клена остролистного отмирают покоящиеся почки; в этом случае деревья долго, до конца июня, остаются без листьев, пока спящие почки не прорастут и не восстановят нормальное облиствение кроны. Иногда покоящиеся почки остаются неповрежденными, но очень сильно повреждается морозом камбий ствола и ветвей, что является особенно опасным, так как после этого весной почки распускаются, но вскоре молодые побеги вянут, и дерево полностью отмирает. Это наблюдается у некоторых тополей, молодых деревьев черной ольхи, яблони.

При переохлаждении наружных частей ствола во время резких понижений температуры зимой иногда происходит продольный разрыв поверхности ствола и образуются морозобойные трещины, что ослабляет дерево и портит качество древесины. Хвойные деревья иногда страдают от ранневесеннего нагрева, когда оттаявшая хвоя начинает уже испарять воду, а из замерзших частей ствола и корней вода еще не поступает. Такое явление называется солнечным ожогом, оно приводит к побурению более молодой, обычно однолетней хвои.

По-разному относятся деревья к поздневесенним заморозкам, которые бывают в начале вегетационного периода, когда температура в нижних слоях атмосферы (до высоты 3 - 4 м) в ночное время снижается до -3 - 5°. Тогда у молодых деревьев побеги, только что появившиеся после распускания почек, повреждаются в такой степени, что иногда совершенно отмирают; к таким породам относятся ель, пихта, дуб, ясень.

По отношению к теплу древесные растения, естественно растущие или разводимые в СССР, классифицируют следующим образом:

1. Вполне холодостойкие, совершенно не повреждающиеся низкими зимними температурами, переносящие морозы до -45-50°, а некоторые и ниже, не повреждающиеся поздними весенними заморозками. К таким древесным растениям относятся лиственницы сибирская и даурская, сосна обыкновенная, ель сибирская, кедры сибирский и стланиковый, можжевельник обыкновенный, осина, березы пушистая и бородавчатая, ольха серая, рябина, ива козья, тополь душистый.

2. Холодостойкие, переносящие суровые зимы, но повреждающиеся очень сильными морозами (ниже - 40°). У одних повреждается хвоя, у других - покоящиеся почки. Некоторые виды этой группы повреждаются поздневесенними заморозками. К ним относятся ель европейская, пихта сибирская, ольха черная, липа мелколистная, вяз, ильм, клен остролистный, тополя черный и белый.

3. Сравнительно теплолюбивые с более длинным вегетационным периодом, вследствие чего однолетние побеги их не всегда успевают одревеснеть и побиваются морозами частично или полностью; все растения сильно повреждаются очень низкими зимними температурами; многие из них повреждаются поздневесенними заморозками. К таким породам относятся дубы летний и зимний, ясень обыкновенный, липа крупнолистная, граб, берест, бархатное дерево, орех маньчжурский, бересклеты, тополь канадский.

4. Теплолюбивые с еще более длинным вегетационным периодом, побеги их часто не вызревают и погибают от морозов. В сильные продолжительные морозы у таких растений погибает полностью надземная часть, и возобновление ее происходит от спящих почек у шейки корня. К таким породам относятся тополь пирамидальный, орех грецкий, каштан настоящий, шелковица, акация белая.

5. Очень теплолюбивые, которые совершенно не переносят или плохо переносят продолжительные морозы до -10-15°. При такой температуре в продолжение нескольких дней они или совершенно погибают, или сильно повреждаются; к ним относятся кедр настоящий, кипарис, эвкалипт, цитрусовые, дуб пробковый, магнолия крупноцветная, акация шелковая.

Резкой границы между указанными группами провести нельзя, многие древесные растения занимают промежуточное положение. Увеличение холодостойкости одного и того же вида также зависит от условий местопроизрастания. Однако все это не исключает необходимости сравнительной характеристики и классификации древесных растений по отношению к теплу.

18. Холодоустойчивость у растений

Подобные документы

    Экологические группы растений: гидатофиты, гидрофиты, гигрофиты, мезофиты и ксерофиты. Общая характеристика ультрафиолетового излучения и его роль в эволюции живого. Влияние УФ-радиации на содержание фотосинтетических пигментов. Понятие стресса растений.

    курсовая работа , добавлен 07.11.2015

    Рассмотрение и анализ основных групп факторов, способных вызвать стресс у растений. Ознакомление с фазами триады Селье в развитии стресса у растений. Исследование и характеристика физиологии стрессоустойчивости растений с помощью защитных систем.

    контрольная работа , добавлен 17.04.2019

    Стресс как совокупность неспецифических адаптационных реакций организма на воздействие неблагоприятных факторов. Оксидативный стресс. Психологические реакции населения, проживающего на радиоактивно загрязнённых территориях, на радиационную угрозу.

    презентация , добавлен 03.05.2017

    Активирование определенных ферментативных систем растений с помощью микроэлементов. Роль почвы как комплексного эдафического фактора в жизни растений, соотношение микроэлементов. Классификация растений в зависимости от потребности в питательных веществах.

    курсовая работа , добавлен 13.04.2012

    Определение понятий "засуха" и "засухоустойчивость". Рассмотрение реакции растений на засуху. Изучение типов растений по отношению к водному режиму: ксерофитов, гигрофитов и мезофитов. Описание механизма приспособления растений к условиям внешней среды.

    реферат , добавлен 07.05.2015

    Сущность понятия "фотопериодизм". Нейтральные, длиннодневные, короткодневные растения. Свет и его роль в жизни растений. Экологические группы растений по отношению к свету. Адаптация растений к световому режиму. Локализация фотопериодических реакций.

    курсовая работа , добавлен 20.05.2011

    Характеристика основных групп растений по отношению к воде. Анатомо-морфологические приспособления растений к водному режиму. Физиологические адаптации растений, приуроченных к местообитаниям разной увлажненности.

    курсовая работа , добавлен 01.03.2002

    Таксономические единицы растительного мира, систематика растений, их значение в питании диких животных и человека. Строение и функции эпидермы листа; классификация, биологическое значение почек. Экологические группы растений по отношению к составу почвы.

    контрольная работа , добавлен 06.02.2012

    Влияние света на питание и испарение. Значение света для распределения растений. Сила света и направление световых лучей. Классификация растений по отношению к свету. Направление листьев и освещение. Различия в анатомическом строении.

    реферат , добавлен 21.01.2003

    Кардинальные температурные точки. Протекание процесса фотосинтеза с помощью света. Циркадные циклы. Ростовые движения: типизация, возможные механизмы. Адаптации растений к температурам. Новообразование специфических, устойчивых к обезвоживанию белков.

Половое размножение у семенных растений, к которым относятся цветковые и голосеменные, осуществляется с помощью семян. При этом обычно бывает важно, чтобы семена оказались на достаточно удаленном расстоянии от родительского растения. В этом случае больше шансов, что молодым растения не придется конкурировать за свет и воду как между собой, так и со взрослым растением.

Покрытосеменные (они же цветковые) растения в процессе эволюции растительного мира решили проблему распространения семян наиболее успешно. Они «изобрели» такой орган как плод.

Плоды служат приспособлением к определенному способу распространения семян. По-сути, чаще всего распространяются плоды, а семена вместе с ними. Поскольку способов распространения плодов достаточно много, то существует множество разновидностей плодов. Основными способами распространения плодов и семян являются следующие:

    с помощью ветра,

    животными (в том числе птицами и человеком),

    саморазбрасыванием,

    с помощью воды.

Плоды растений, которые распространяются ветром, имеют специальные приспособления, увеличивающие их площадь, но не увеличивающие их массу. Это различные пушистые волоски (например, плоды тополя и одуванчика) или крыловидные выросты (как у плодов клена). Благодаря таким образованиям, семена долго парят в воздухе, а ветер их относит всё дальше и дальше от родительского растения.

В степи и полупустыне нередко растения засыхают, и ветер обламывает их у корня. Перекатываемые ветром, засохшие растения рассыпают по местности свои семена. Таким «перекати-поле» растениям, можно сказать, не нужны даже плоды для распространения семян, так как с помощью ветра их распространяет само растение.

С помощью воды распространяются семена водных и околоводных растений. Плоды таких растений не тонут, а уносятся течением (например, у ольхи, растущей по берегам). Причем это не обязательно мелкие плоды. У кокосовой пальмы они крупные, но легкие, поэтому не тонут.

Приспособления плодов растений к распространению животными более разнообразные. Ведь животные, птицы и человек могут по-разному распространять плоды и семена.

Плоды некоторых покрытосеменных приспособлены к тому, чтобы цепляться за шерсть животных. Если, например, животное или человек пройдет рядом с репейником, то за него зацепится несколько колючих плодов. Рано или поздно животное их сбросит, но семена репейника окажутся уже относительно далеко от исходного места. Кроме репейника, примером растения с плодами-зацепками является череда. Ее плоды относятся к типу семянки. Однако у этих семянок есть маленькие шипы, покрытые зубчиками.

Сочные плоды позволяют растениям распространять их семена с помощью животных и птиц, которые поедают эти плоды. Но как же они их распространяют, если плод и семена вместе с ним съедены и переварены животным? Дело в том, что переваривается в основном сочная часть околоплодника плода, а вот семена - нет. Они выходят из пищеварительного тракта животного. Семена оказываются далеко от родительского растения и окружены пометом, который, как известно, неплохое удобрение. Поэтому сочный плод можно считать одним из самых успешных достижений эволюции живой природы.

Существенную роль в распространении семян сыграл человек. Так плоды и семена многих растений были случайно или намеренно завезены на другие континенты, где они смогли прижиться. В результате сейчас мы можем, например, наблюдать как в Америке растут растения, характерные для Африки, а в Африке - растения, родина которых Америка.

Существует вариант распространения семян с помощью разбрасывания, а точнее саморазбрасывания. Конечно, это не самых эффективный метод, так как семена оказываются всё-равно близко к материнскому растению. Однако такой способ нередко наблюдается в природе. Обычно разбрасывание семян характерно для плодов типа стручок, боб и коробочка. Когда боб или стручок засыхает, его створки скручиваются в разные стороны, и плод растрескивается. Из него с небольшой силой вылетают семена. Так распространяют свои семена горох, акация и другие бобовые.

Плод коробочка (например, у мака) колышется на ветру, и их него высыпаются семена.

Однако саморазбрасывание характерно не только для сухих семян. Например, у растения под названием бешеный огурец семена вылетают их сочного плода. В нем скапливается слизь, которая под давлением выбрасывается вместе с семенами.

Понятие адаптации

Адаптация - это процесс приспособления живых организмов к определённым условиям внешней среды. Существуют следующие виды адаптации:

Экологические группы растений по отношению к свету:

  • а) адаптации животных к свету
  • б) Зеленым растениям свет нужен для образования хлорофилла, формирования гранильной структуры хлоропластов; он регулирует работу устричного аппарата, влияет на газообмен и транспирацию, активизирует ряд ферментов, стимулирует биосинтез белков и нуклеиновых кислот.

Свет влияет на деление и растяжение клеток, ростовые процессы и на развитие растений, определяет сроки цветения и плодоношения, оказывает формообразующее воздействие. Но самое большое значение имеет свет в воздушном питании растений, в использовании ими солнечной энергии в процессе фотосинтеза. С этим связаны основные адаптации растений по отношению к свету. Об этом свидетельствует весь ход эволюции наземных высших растений.

Фотоавтотрофы способны ассимилировать СО2, используя лучистую энергию Солнца и преобразуя ее в энергию химических связей в органических соединениях. Пурпурные и зеленые бактерии, имеющие бактериохлорофиллы, способны поглощать свет в длинноволновой части (максимумы в области 800--1100 нм). Это позволяет им существовать даже при наличии только невидимых инфракрасных лучей. Водоросли и высшие зеленые растения -- хлорофиллсодержащие организмы, распространение которых зависит от солнечного света.

На суше для высших фотоавтотрофных растений условия освещения практически везде благоприятны, и они растут повсюду, где позволяют климатические и почвенные условия, приспосабливаясь к световому режиму данного местообитания.

Водоросли обитают в водоемах, но встречаются и на суше, на поверхности разных предметов -- на стволах деревьев, на заборах, на скалах, на снегу, на поверхности почвы и в ее толще.

Световой режим любого местообитания определяется интенсивностью прямого и рассеянного света, количеством света (годовой суммарной радиацией), его спектральным составом, а также альбедо -- отражательной способностью поверхности, на которую падает свет. Перечисленные элементы светового режима очень переменчивы и зависят от географического положения, высоты над уровнем моря, от рельефа, состояния атмосферы, характера земной поверхности, растительности, от времени суток, сезона года, солнечной активности и глобальных изменений в атмосфера.

У растений возникают различные морфологические и физиологические адаптации к световому режиму местообитаний.

По требованию к условиям освещения принято делить растения на следующие экологические группы:

  • 1) светолюбивые (световые), или гелиофиты,-- растения открытых, постоянно хорошо освещаемых местообитаний;
  • 2) тенелюбивые (теневые), или сциофиты,-- растения нижних ярусов тенистых лесов, пещер и глубоководные растения; они плохо переносят сильное освещение прямыми солнечными лучами;
  • 3) теневыносливые, или факультативные гелиофиты,-- могут переносить большее или меньшее затенение, но хорошо растут и на свету; они легче других растений перестраиваются под влиянием изменяющихся условий освещения.
  • Б) Свет для животных необходимое условие видения, зрительной ориентации в пространстве. Рассеянные, отраженные от окружающих предметов лучи, воспринимаемые органами зрения животных, дают им значительную часть информации о внешнем мире. Развитие зрения у животных шло параллельно с развитием нервной системы.

Полнота зрительного восприятия окружающей среды зависит у животных в первую очередь от степени эволюционного развития. Примитивные глазки многих беспозвоночных -- это просто светочувствительные клетки, окруженные пигментом, а у одноклеточных -- светочувствительный участок цитоплазмы. Процесс восприятия света начинается с фотохимических изменений молекул зрительных пигментов, после чего возникает электрический импульс. Органы зрения из отдельных глазков не дают изображения предметов, а воспринимают только колебания освещенности, чередование света и тени, свидетельствующие об изменениях в окружающей среде. Образное видение возможно только при достаточно сложном устройстве глаза. Пауки, например, могут различать контуры движущихся предметов на расстоянии 1--2 см. Наиболее совершенные органы зрения -- глаза позвоночных, головоногих моллюсков и насекомых. Они позволяют воспринимать форму и размеры предметов, их цвет, определять расстояние. Способносгь к объемному видению зависит от угла расположения глаз и от степени перекрывания их полей зрения. Объемное зрение, например, характерно для человека, приматов, ряда птиц -- сов, соколов, орлов, грифов. Животные, у которых глаза расположены по бокам головы, имеют монокулярное, плоскостное зрение.

Предельная чувствительность высокоразвитого глаза огромна. Привыкший к темноте человек может различить свет, интенсивность которого определяется энергией всего пяти квантов, что близко к физически возможному пределу.

Понятие видимого света в некоторой мере условно, так как отдельные виды животных сильно различаются по способности воспринимать разные лучи солнечного спектра. Для человека область видимых лучей -- от фиолетовых до темно-красных.

Некоторые животные, например гремучие змеи, видят инфракрасную часть спектра и ловят добычу в темноте, ориентируясь при помощи органов зрения. Для пчел видимая часть спектра сдвинута в более коротковолновую область. Они воспринимают как цветовые значительную часть ультрафиолетовых лучей, но не различают красных.

Кроме эволюционного уровня группы, развитие зрения и его особенности зависят от экологической обстановки и образа жизни конкретных видов. У постоянных обитателей пещер, куда не проникает солнечный свет, глаза могут быть полностью или частично редуцированы, как, например, у слепых жуков жужелиц, протеев среди амфибий и др.

Способность к различению цвета в значительной мере зависит и от того, при каком спектральном составе излучения существует или активен вид. Большинство млекопитающих, ведущих происхождение от предков с сумеречной и ночной активностью, плохо различают цвета и видят все в черно-белом изображении (собачьи, кошачьи, хомяки и др.). Такое же зрение характерно для ночных птиц (совы, козодои). Дневные птицы имеют хорошо развитое цветовое зрение.

Жизнь при сумеречном освещении приводит часто к гипертрофии глаз. Огромные глаза, способные улавливать ничтожные доли света, свойственны ведущим ночной образ жизни лемурам, обезьянам лори, долгопятам, совам и др.

Животные ориентируются с помощью зрения во время дальних перелетов и миграций. Птицы, например, с поразительной точностью выбирают направление полета, преодолевая иногда многие тысячи километров от гнездовий до мест зимовок.

Доказано, что при таких дальних перелетах птицы хотя бы частично ориентируются по Солнцу и звездам, т. е. астрономическим источникам света. При вынужденном отклонении от курса они способны к навигации, т. е. к изменению ориентации, чтобы попасть в нужную точку Земли. При неполной облачности ориентация сохраняется, если видна, хотя бы часть неба. В сплошной туман птицы не летят или, если он застает их в пути, продолжают лететь вслепую и часто сбиваются с курса. Способность птиц к навигации доказана многими опытами.

Птицы, сидящие в клетках, в состоянии предмиграционного беспокойства всегда ориентируются в сторону зимовок, если она могут наблюдать за положением Солнца или звезд. Например, когда чечевиц перевезли с побережья Балтийского моря в Хабаровск, они изменили свою ориентацию в клетках с юго-восточной на юго-западную. Зимуют эти птицы в Индии. Таким образом, они способны правильно выбирать направление полета на зимовку из любой точки Земли. Днем птицы учитывают не только положение Солнца, но и смещение его в связи с широтой местности и временем суток. Опыты в планетарии показали, что ориентация птиц в клетках меняется, если менять перед ними картину звездного неба в соответствии с направлением предполагаемого перелета.

Навигационная способность птиц врожденная. Она не приобретается за счет жизненного опыта, а создается естественным отбором как система инстинктов. Точные механизмы такой ориентации еще плохо изучены. Гипотеза ориентации птиц в перелетах по астрономическим источникам света в настоящее время подкреплена материалами опытов и наблюдений.

Способность к подобного рода ориентации свойственна и другим группам животных. Среди насекомых она особенно развита у пчел. Пчелы, нашедшие нектар, передают другим информацию о том, куда лететь за взятком, используя в качестве ориентира положение Солнца. Пчела-разведчица, открывшая источник корма, возвращается в улей и начинает на сотах танец, совершая быстрые повороты. При этом она описывает фигуру в виде восьмерки, поперечная ось которой наклонена по отношению к вертикали. Угол наклона соответствует углу между направлениями на Солнце и на источник корма. Когда медосбор очень обилен, разведчицы сильно возбуждены и могут танцевать долго, в течение многих часов, указывая сборщицам путь к нектару. За время их танца угол наклона восьмерки постепенно смещается в соответствии с движением Солнца по небу, хотя пчелы в темном улье и не видят его. Если Солнце скрывается за облаками, пчелы ориентируются на поляризованный свет свободного участка неба. Плоскость поляризации света зависит от положения Солнца.

Задание 1. Адаптация растений к распространению семян

Установите, как шла адаптация растений к распространению семян за счет насекомых, птиц, млекопитающих и человека. Заполните таблицу.

Адаптация растений к распространению семян

п/п

Виды растений

Насекомые

Птицы

Млеко-

питающие

Человек

культурный

войлочный

трехраздельная

незабудковая

Репейник

обыкновенный

Какими свойствами обладают семена перечисленных в таблице растений, которые способствуют распространению семян найденными Вами способами? Приведите конкретные примеры.

Взаимодействие двух популяций теоретически можно представить в виде парных комбинаций символов «+», «-», «0», где «+» обозначает выгоду для популяции, «-» – ухудшение состояния популяции, то есть вред, и «0» – отсутствие значимых изменений при взаимодействии. Используя предложенную символику, дайте определение типам взаимодействия, приведите примеры взаимоотношений и составьте в тетради таблицу.

Биотические взаимоотношения

взаимоотношений

Символическое обозначение

Определение

взаимоотношений

Примеры

взаимоотношений

данного типа

1. Используя раздаточный дидактический материал, составьте пищевую сеть экосистемы озера.

2. При каких условиях озеро не будет изменяться длительное время?

3. Какие действия людей могут привести к быстрому разрушению озерной экосистемы?

Индивидуальное задание по модулю «От экологии организмов до экологии экосистем» Вариант 6

Задание 1. Адаптация живых организмов к экстремальным условиям жизни

Многие организмы в течение жизни периодически испытывают влияние факторов, сильно отличающихся от оптимума. Им приходится переносить и сильную жару, и морозы, и летние засухи, и пересыхание водоемов, и нехватку пищи. Как приспосабливаются они к таким экстремальным условиям, когда нормальная жизнь сильно затруднена? Приведите примеры основных путей адаптации к перенесению неблагоприятных условий жизни

Задание 2. Биотические взаимоотношения.

Определите по графикам, к каким последствиям могут привести взаимоотношения между двумя близкими, совместно обитающими в одной экологической нише видами организмов? Как называется данное взаимоотношение? Ответ поясните.

Рис.11. Рост численности двух видов инфузорий-туфелек (1 – туфелька хвостатая, 2 – туфелька золотистая):

А – при выращивании в чистых культурах с большим количеством пищи (бактерий); Б – в смешанной культуре, с тем же количеством пищи

Задание 3. Природные экосистемы Южного Урала

1. Составьте пищевую сеть речной экосистемы.

2. При каких условиях река не будет изменяться длительное время?

3. Какие действия людей могут привести к быстрому разрушению речной экосистемы?

4. Охарактеризуйте трофическую структуру экосистемы с помощью экологических пирамид численности, биомасс, энергии.