Наружные стены зданий конструктивные решения. Тема: Конструктивные решения кирпичных стен

Стена здания - основная ограждающая конструкция здания. Наряду с ограждающими функциями стены одновременно в той или иной степени выполняют и несущие функции (служат опорами для восприятия вертикальных и горизонтальных нагрузок).

Основные требования, предъявляемые к стенам: прочность, теплоустойчивость, звукоизоляционная способность, огнестойкость, долговечность, архитектурная выразительность и экономичность.

Различают наружные и внутренние стены. По характеру статической работы наружные стены подразделяют на несущие, которые, кроме собственного веса, воспринимают и передают на фундамент нагрузки от перекрытий, покрытий, давление ветра и др.; самонесущие, опирающиеся на фундамент, несущие нагрузку только от собственного веса (в пределах всех этажей здания) и для обеспечения устойчивости сопряжённые с каркасом здания: ненесущие (в т. ч. навесные), воспринимающие собственный вес только в пределах одного этажа и передающие его на каркас или др. опорные конструкции здания. Внутренние стены могут быть несущими (капитальными) или ненесущими (перегородки, предназначены только для разделения помещений, их устанавливают непосредственно на перекрытии). Во внутренних стенах часто устраивают каналы и ниши для вентиляции, газоходов, водопроводных и канализационных труб и т.д. Несущие стены совместно с перекрытиями образуют устойчивую пространственную систему несущего остова здания. В каркасных зданиях самонесущие стены нередко выполняют функции т. н. диафрагм жёсткости.

По способу возведения стены подразделяют на сборные, монтируемые из готовых элементов заводского изготовления; монолитные - обычно бетонные, возводимые в передвижной или скользящей опалубке, ручной кладки - из мелкоштучных материалов на растворах. В зависимости от крупности сборных элементов, степени их заводской готовности и принятой системы разрезки различают сборные стены крупноблочные и крупнопанельные. По конструктивному решению стены бывают однослойные и многослойные.

Материалы для возведения стены выбираются в зависимости от климатических условий, назначения и капитальности здания, его этажности, от технической и экономической целесообразности. При многоэтажном строительстве зданий с несущими стенами используют кирпич, керамические камни, крупные блоки из лёгких и ячеистых бетонов, железобетонные панели и др. крупноразмерные изделия. Ненесущие стены, вес которых должен быть минимален, изготовляют из многослойных железобетонных панелей с эффективным утеплителем, панелей из особо лёгких бетонов, асбестоцементных панелей. В малоэтажном строительстве применяют дерево, силикатный и сырцовый кирпич, шлакобетонные, керамические и природные камни.

Стены во многом определяют конструктивное решение и общий архитектурный облик здания. Название материала стены часто характеризует архитектурно-конструктивный тип дома: крупнопанельный, крупноблочный, кирпичный, деревянный рубленый, каркасно-щитовой и т.п.

Стена несущие или самонесущие представляют собой трехслойную конструкцию с несущем слоем из полнотелого керамического кирпича толщиной (250,380,510,640мм) а также из бетонных блоков или монолитного железобетона со слоем теплоизоляции из литого пенополистирола.

Защитно декоративный слой может быть выполнен тонкослойной штукатуркой толщиной 5-8мм по щелочестойкой стеклосетке или стенкой из керамического полнотелого кирпича толщиной 120мм.

В деревянном домостроение стена с эффективной теплоизоляцией выполняется каркасно-обшивной.

При устройстве стен с защитным слоем из штукатурки необходимо чтобы:

Защитная штукатурка имела нулевой предел распространения огня и была армирована щелочестойкой стеклосеткой,

Толщину наружных стен выбирают по наибольшей из величин, полученных в результате статического и теплотехнического расчетов, и назначают в соответствии с конструктивными и теплотехническими особенностями ограждающей конструкции.

В полносборном бетонном домостроении расчетную толщину наружной стены увязывают с ближайшей большей величиной из унифицированного ряда толщин наружных стен, принятых при централизованном изготовлении формовочного оборудования 250, 300, 350, 400 мм для панельных и 300, 400, 500 мм для крупноблочных зданий.

Расчетную толщину каменных стен согласуют с размерами кирпича или камня и принимают равной ближайшей большей конструктивной толщине, получаемой при кладке. При размерах кирпича 250×120×65 или 250×120×88 мм (модульный кирпич) толщина стен сплошной кладки в 1; 1,5; 2; 2,5 и 3 кирпича (с учетом вертикальных швов по 10 мм между отдельными камнями) составляет 250, 380, 510, 640, и 770 мм.

Конструктивная толщина стены из пиленого камня или легко бетонных мелких блоков, унифицированные размеры которых составляют 390×190×188 мм, при кладке в один камень равна 390 и в 1,5 – 490 мм.

Конструирование стен основано на всестороннем использовании свойств применяемых материалов и решает задачи создания необходимого уровня прочности, устойчивости, долговечности, изоляционных и архитектурно-декоративных качеств.

В соответствии с современными требованиями экономного расходования материалов при проектировании малоэтажных жилых зданий с каменными стенами стараются использовать максимальное количество местных строительных материалов. Например, в районах, удаленных от транспортных магистралей, для возведения стен используют мелкие камни местного производства или монолитный бетон в сочетании с местными утеплителями и на местных заполнителях, для которых требуется только привозной цемент. В поселках же, располагаемых вблизи индустриальных центров, проектируют дома со стенами из крупных блоков или панелей, изготовляемых на предприятиях этого региона. В настоящее время все более широкое применение каменные материалы получают при строительстве домов на садово-огородных участках.

При проектировании малоэтажных домов обычно используют две схемы конструктивного решения наружных стен – сплошные стены из однородного материала и облегченные многослойные стены из материалов различной плотности. Для возведения внутренних стен используют только сплошную кладку. При проектировании наружных стен по схеме сплошной кладки предпочтение отдают менее плотным материалам. Такой прием позволяет достигнуть минимальной толщины стен по теплопроводности и более полно использовать несущую способность материала. Строительные материалы большой плотности выгодно использовать в сочетании с материалами малой плотности (облегченные стены). Принцип устройства облегченных стен основан на том, что несущие функции выполняет слой (слои) из материалов большой плотности (γ > 1600 кг/м 3), а теплоизолятором служит материал малой плотности. Например, вместо сплошной наружной стены из глиняного кирпича толщиной 64 см можно использовать облегченную конструкцию стены из слоя того же кирпича толщиной 24 см, с утеплителем из фибролита толщиной 10 см. Такая замена приводит к снижению массы стены в 2,3 раза.


Для изготовления стен малоэтажных домов используют искусственные и естественные мелкие камни. В настоящее время в строительстве используют искусственные обжиговые камни (кирпич глиняный полнотелый, пустотелый, пористый и керамические блоки); безобжиговые камни (силикатный кирпич, пустотелые блоки из тяжелого бетона и блоки сплошные из легкого бетона); естественные мелкие камни – рваный бут, пиленые камни (туф, пемза, известняк, песчаник, ракушечник и др.).

Размер и вес камней проектируют в соответствии с технологией ручной кладки и с учетом максимальной механизации работ. Стены выкладывают из камней с заполнением зазора между ними раствором. Чаще используют цементно-песчаные растворы. Для кладки внутренних стен используют обычный песок, а для наружных стен песок малой плотности (перлитовый и др.). Кладку стен ведут с обязательным соблюдением перевязки швов (4.6) по рядам.

Как уже было отмечено, ширина кладки стены всегда кратна числу половинок кирпича. Ряды, выходящие на фасадную поверхность кладки, называют лицевой верстой , а обращенные на внутреннюю сторонувнутренней верстой . Ряды кладки между внутренней и лицевой верстой называют забуткой . Кирпичи, уложенные длинной стороной вдоль стены, образуют ложковый ряд , а уложенные поперек стены – тычковый ряд . Система кладки (4.7) образуется определенным расположением камней в стене.

Рядность кладки определяется числом ложковых и тычковых рядов. При равномерном чередовании ложковых и тычковых рядов получается двухрядная (цепная) система кладки (рис.4.5б). Менее трудоемкая многорядная система кладки, при которой один тычковый ряд кирпичей перевязывает пять ложковых рядов (рис.4.5а). В стенах из мелких блоков, возводимых по многорядной системе, один тычковый ряд перевязывает два ложковых ряда кладки (рис.4.5в).

Рис.4.5. Виды ручной кладки стен: а) – многорядная кирпичная кладка; б) – цепная кирпичная кладка; в) – многорядная каменная кладка; г) – цепная каменная кладка

Сплошную кладку из камней большой плотности используют только для возведения внутренних стен и столбов и наружных стен неотапливаемых помещений (рис.4.6а-ж). В некоторых случаях эту кладку используют для возведения наружных стен по многорядной системе (рис.4.6а-в, д). Двухрядную систему кладки камней используют только в необходимых случаях. Например, в керамических камнях щели пустот рекомендуется располагать поперек теплового потока с целью снижения теплопроводности стены. Это достигается при цепной системе кладки.

Облегченные наружные стены проектируют двух типов – с утеплителем между двух стенок сплошной кладки или с воздушной прослойкой (рис.4.6и-м) и с облицовкой утеплителем стены сплошной кладки (рис.4.6н, о). В первом случае различают три основных конструктивных варианта стен – стены с горизонтальными выпусками анкерных камней, стены с вертикальными диафрагмами из камней (колодцевая кладка) и стены с горизонтальными диафрагмами. Первый вариант используется только в случаях применения в качестве утеплителя легкого бетона, который замоноличивает анкерные камни. Второй вариант приемлем для утеплителя в виде заливки легкого бетона и укладки термовкладышей (рис.4.6к). Третий вариант используют при утеплителях из сыпучих материалов (рис.4.6л) или из легко бетонных камней. Сплошная кладка стен с воздушной прослойкой (рис.4.6м) также относится к категории облегченных стен, так как замкнутая воздушная прослойка выполняет функции слоя утеплителя. Толщину прослоек целесообразно принимать равной 2 см. Увеличение прослойки практически не дает увеличения термического ее сопротивления, а уменьшение резко снижает эффективность такой теплоизоляции. Чаще воздушную прослойку используют в сочетании с плитами утеплителя (рис.4.6к, о).

Рис.4,6, Варианты ручной кладки стен малоэтажных жилых зданий: а), б) – сплошные наружные стены из кирпича; в) – сплошная внутренняя кирпичная стена; д), ж) – сплошные наружные стены из камней; г), е) – сплошные внутренние стены из камней; и)-м) – облегченные стены с внутренним утеплением; н), о) – облегченные стены с наружным утеплением; 1 – кирпич; 2 – штукатурка или облицовка листами; 3 – камень искусственный; 4 – утеплитель плитный; 5 – воздушная прослойка; 6 – пароизоляция; 7 – деревянная антисептированная рейка; 8 – засыпка; 9 – растворная диафрагма; 10 – легкий бетон; 11 – камень естественный морозостойкий

Для утепления каменных стен со стороны улицы применяют жесткий плитный утеплитель из легких бетонов, пеностекла, фибролита в сочетании с атмосферостойкой и прочной облицовкой (листы асбестоцемента, доски и др.). Вариант утепления стен снаружи эффективен только при отсутствии доступа холодного воздуха в зону контакта несущего слоя со слоем утепления. Для утепления наружных стен со стороны помещения используют полужесткий плитный утеплитель (камышит, соломит, минераловата и др.), располагающийся вплотную к поверхности первых или с образованием воздушной прослойки, толщиной 16 - 25 мм – «на относе». Плиты «на относе» крепят к стене металлическими зигзагообразными скобами или прибивают к деревянным антисептированным рейкам. Открытую поверхность слоя утепления закрывают листами сухой штукатурки. Между ними и слоем утепления обязательно располагают слой пароизоляции из пергамина, полиэтиленовой пленки, металлической фольги и др.

Изучите и проанализируйте вышеизложенный материал и ответьте на предложенный вопрос.

Вопрос 4.2. Могут ли ряды кирпичей, уложенные длинной стороной вдоль стены, называться тычковыми рядами?

4.2. ответ: да

Конструкции наружных стен гражданских и промышленных зданий классифицируются по следующим признакам:

1) по статической функции:

а) несущие;

б) самонесущие;

в) ненесущие (навесные).

Несущие наружные стены воспринимают и передают на фундаменты собственный вес и нагрузки от смежных конструкций здания: перекрытий, перегородок, крыш и др. (одновременно выполняют несущую и ограждающую функции).

Самонесущие наружные стены воспринимают вертикальную нагрузку только от собственного веса (включая нагрузку от балконов, эркеров, парапетов и др. элементов стены) и передают их на фундаменты через промежуточные несущие конструкции – фундаментные балки, ростверки или цокольные панели (одновременно выполняют несущую и ограждающую функции).

Ненесущие (навесные) наружные стены поэтажно (или через несколько этажей) опираются на смежные несущие конструкции здания – перекрытия, каркас или стены. Таким образом, навесные стены выполняют только ограждающую функцию.

Несущие и ненесущие наружные стены применяются в зданиях любой этажности. Самонесущие стены опираются на собственный фундамент, поэтому их высота ограничивается из-за возможности взаимных деформаций наружных стен и внутренних конструкций здания. Чем выше здание, тем больше разница в вертикальных деформациях, поэтому, например, в панельных домах допускается применение самонесущих стен при высоте здания не более 5 этажей.

Устойчивость самонесущих наружных стен обеспечивается гибкими связями с внутренними конструкциями здания.

2) По материалу:

а) каменные стены возводятся из кирпича (глиняного или силикатного) или камней (бетонных или природных) и применяются в зданиях любой этажности. Каменные блоки выполняют из естественного камня (известняк, туф и др.) или искусственного (бетон, легкий бетон).

б) Бетонные стены выполняют из тяжелого бетона класса В15 и выше плотностью 1600 ÷ 2000 кг/м3 (несущие части стен) или легкого бетона классов В5 ÷ В15 плотностью 1200 ÷ 1600 кг/м3 (для теплоизоляционных частей стен).

Для изготовления легких бетонов используются искусственные пористые заполнители (керамзит, перлит, шунгизит, аглопорит и т. п.) или естественные легкие заполнители (щебень из пемзы, шлака, туфа).

При возведении ненесущих наружных стен также используется ячеистый бетон (пенобетон, газобетон и т. п.) классов В2 ÷ В5 плотностью 600 ÷ 1600 кг/м3. Бетонные стены применяются в зданиях любой этажности.

в) Деревянные стены применяются в малоэтажных зданиях. Для их возведения используются сосновые бревна диаметром 180 ÷ 240 мм или брусья сечением 150х150 мм или 180х180 мм, а также дощатые или клеефанерные щиты и панели толщиной 150 ÷ 200 мм.


г) стены из небетонных материалов в основном применяются при возведении промышленных зданий или малоэтажных гражданских зданий. Конструктивно они состоят из наружной и внутренней обшивки из листового материала (сталь, алюминиевые сплавы, пластик, асбестоцемент и др.) и утеплителя (сэндвич-панели). Стены данного типа проектируют несущими только для одноэтажных зданий, а при большей этажности – только как ненесущие.

3) по конструктивному решению:

а) однослойные;

б) двухслойные;

в) трехслойные.

Количество слоев наружных стен здания определяется по результатам теплотехнического расчета. Для соответствия современным нормам по сопротивлению теплопередаче в большинстве регионов России необходимо проектировать трехслойные конструкции наружных стен с эффективным утеплителем.

4) по технологии возведения:

а) по традиционной технологии возводятся каменные стены ручной кладки. При этом кирпичи или камни укладываются рядами по слою цементно-песчаного раствора. Прочность каменных стен обеспечивается прочностью камня и раствора, а также взаимной перевязкой вертикальных швов. Для дополнительного повышения несущей способности каменной кладки (например, для узких простенков) применяется горизонтальное армирование сварными сетками через 2 ÷ 5 рядов.

Требуемую толщину каменных стен определяют по теплотехническому расчету и увязывают со стандартными размерами кирпичей или камней. Применяются кирпичные стены толщиной в 1; 1,5; 2; 2,5 и 3 кирпича (250, 380, 510, 640 и 770 мм соответственно). Стены из бетонных или природных камней при кладке в 1 и 1,5 камня имеют толщину 390 и 490 мм соответственно.

5) по расположению оконных проемов:

Из рассмотрения данных вариантов можно видеть, что функциональное назначение здания (жилое, общественное или промышленное) определяет конструктивное решение его наружных стен и внешний вид в целом.

Одно из основных требований, предъявляемое к наружным стенам – это необходимая огнестойкость. По требованиям противопожарных норм несущие наружные стены должны быть выполнены из несгораемых материалов с пределом огнестойкости не менее 2 часов (камень, бетон). Применение трудносгораемых несущих стен (например, деревянных оштукатуренных) с пределом огнестойкости не менее 0,5 часа допускается только в одно-, двухэтажных домах.

Известно, что однослойные ограждающие конструкции из известных на сегодняшний день строительных материалов не могут обеспечить требуемую по современным энергосберегающим нормам тепловую защиту здания, в связи с этим, необходимо изначально предусматривать многослойное ограждение, имеющее в своем составе эффективный утеплитель, а в ряде случаев - воздушную вентилируемую прослойку.

При разработке конструктивного решения стен и покрытия исходили из требований к расчетным сопротивлениям ограждающих конструкций по III уровню теплозащиты [ КМК ].

В соответствие с этим нормативным документом предписано расчетные сопротивления теплопередаче принимать в зависимости от величины градусо-суток отопительного периода (ГСОП), определяемого по формуле (2.6).

Для города Ташкента необходимые для расчета параметры, определенные по КМК 2.01.01-94 , составили:

  • - температура наиболее холодных суток с обеспеченностью 0,92 и пятидневки с обеспеченностью 0,98 равна tн= - 160С;
  • - средняя температура отопительного периода tот.пер=+2,70С;
  • - продолжительность отопительного периода Zот.пер=129 суток.

Температура воздуха внутри помещений для обеспечения достаточного уровня комфортности принималась равной tв= +200С.

Тогда ГСОП= (20 - 2,7)х129= 2232 град х сут.

При таком значении ГСОП по изменению 1 к КМК 2.01.04-07 принимаем:

  • - для стен зданий расчетное сопротивление теплопередаче по зимним условиям эксплуатации Rтр0=2, 1 м2·0С/Вт;
  • - для покрытий Rтр0=2,8 м2·0С/Вт.

Теплотехнические расчеты выполнялись с использованием программного комплекса «BASE» (версия 7.3).

Наружные стены для расчета были приняты следующего конструктивного решения (рис.3.12):

  • - цементно-песчаный раствор М50, толщиной 20 мм;
  • - кирпич глиняный обыкновенный М75 на цементно-песчаном растворе марки М-50 толщиной 380 мм;
  • - утеплитель из пенополистирола;
  • - цементно-песчаный раствор М50, толщиной 20 мм.

Рис. 3.12.

В результате расчета была принята толщина утеплителя 80 мм. Затем принятая конструкция была проверена на теплоустойчивость по летним условиям эксплуатации.

Результаты расчета

1. - Исходные данные:

Тип здания - Административные.

Тип конструкции - СТЕНА

Таблица 3.1

Характеристика ограждения:

Требуется произвести:

максимальное 744 Вт/м2

среднее 275 Вт/м2

Отделка наружней поверхности: Штукатурка цементная кремовая

Коэффициент поглощения солнечной радиации 0.4

2. - Выводы:

Требуемое сопротивление ограждения теплопередаче 2,1 м2*град/Вт

Фактическое (приведенное) сопротивление ограждения теплопередаче 2,21 м2*град/Вт


Таблица 3.2

Фактическое сопротивление воздухопроницанию 656,45 м2*ч*Па/кг

Амплитуда колебаний температуры внутренней поверхности 0,04 град.С

Заполнение оконных проемов и остекление оранжерей приняты без расчета, исходя из имеющейся в Узбекистане номенклатуры изделий такого назначения, - однокамерные стеклопакеты в пластмассовых переплетах из обычного стекла с приведенным сопротивлением теплопередаче равном 0,36 м2·0С/Вт.

Конструктивное решение покрытия мансардного этажа для расчета было принято следующее (рис.3.13):

  • - гипсокартон толщиной 10 мм;
  • - деревянный сплошной настил толщиной 20 мм;
  • - утеплитель из экструдированного пенополистирола 40000С;
  • - пароизоляционный слой из пергамина кровельного толщиной 0,4 мм;
  • - воздушное пространство толщиной 40 мм;
  • - металлочерепица.

Рис. 3.13.

Вставить распечатку расчета на теплопередачу

В результате расчета была принята толщина утеплителя 140 мм. Затем принятая конструкция была проверена на теплоустойчивость по летним условиям эксплуатации.

Результаты расчета

Теплотехнический расчет ограждающих конструкций

1. - Исходные данные:

Тип здания - Общественные, административные, бытовые

Тип конструкции - ПОКРЫТИЕ

Условия эксплуатации ограждения:

Температура наружнего воздуха -16 град.

Температура внутреннего воздуха 20 град.

Средняя температура отопительного периода -2,7 град.

Продолжительность отопительного периода 129 дней

Таблица 3.3

Характеристика ограждения:

Номер слоя

Толщина, м

Наименование

Величина

Ед. измерения

Материал слоя

Теплопроводность

Вт/(м*град)

Гипсокартон

Теплопроводность

Вт/(м*град)

Пергамин

Теплопроводность

Вт/(м*град)

Пенополистирол G=100кг/м3

Теплопроводность

Вт/(м*град)

Пергамин

Теплопроводность

Вт/(м*град)

Коэффициент теплоотдачи внутренней поверхности 8,7 Вт/(м2*град)

Коэффициент теплоотдачи наружней поверхности 23 Вт/(м2*град)

Режим работы ограждающей конструкции:

Эксплуатация; режим помещений - Нормальный (55%); зона влажности - Нормальный

Требуется произвести:

Проверку ограждения на сопротивление теплопередаче

Расчет ограждающей конструкции на теплоустойчивость

Расчет ограждающей конструкции на воздухопроницаемость

Среднемесячная температура за июль 27,1 град.

Амплитуда суточных колебаний воздуха в июле месяце 23,7 град.

Минимальная скорость ветра за июль 1,4 м/с

Значение суммарной солнечной радиации, для стен - как для вертикальных поверхностей, для покрытий - как для горизонтальных:

максимальное 1022 Вт/м2

среднее 497 Вт/м2

Отделка наружней поверхности: Сталь кровельная оцинкованная

Коэффициент поглощения солнечной радиации 0.65

Высота здания до верха вытяжной шахты 11,7 м

Максимальная скорость ветра за январь месяц 2,1 м/с

2. - Выводы:

Сопротивление ограждения теплопередаче ДОСТАТОЧНО

Требуемое сопротивление ограждения теплопередаче 2,8 м2*град/Вт

Фактическое (приведенное) сопротивление ограждения теплопередаче 2,95 м2*град/Вт


Таблица 3.4

Температура на контакте слоев ограждения:

Фактическое сопротивление воздухопроницанию 13000160 м2*ч*Па/кг

Нормируемое сопротивление воздухопроницанию 24,87 м2*ч*Па/кг

Сопротивления паропроницаемости ДОСТАТОЧНО.

Амплитуда колебаний температуры внутренней поверхности 0,96 град.С

Нормируемая амплитуда колебаний температуры поверхности 1,89 град.С

Теплоустойчивости ограждающей конструкции ДОСТАТОЧНО.

Вставить распечатку расчета на теплоустойчивость

Не меньшее значение придается в практике проектирования и утеплению полов первого этажа здания, так как через полы, устроенные без теплоизоляции, проходят большие потери тепла. Помимо уменьшения потерь тепла, теплоизоляция пола позволяет более эффективно использовать их теплоемкость. Температура же поверхности пола является основным фактором, определяющим степень комфортности помещений. В нашем случае для утепления пола всех помещений первого этажа, за исключением холла, принято конструктивное решение, представленное на рис. 3.14.


Рис. 3.14.

Был произведен расчет по определению термического сопротивления утепленного пола и неутепленного пола холла.

Вставить расчеты

Таким образом, расчетное сопротивление утепленного пола составило Rо ут.п.= 0,57 м2·0С/Вт; а «холодного» пола холла Rо холл..п.= 0,39 м2·0С/Вт;

В завершении была выполнена проверка запроектированной оболочки здания на повышенную теплозащиту по формуле (2.8).

В запроектированном здании были определены площади ограждающих конструкций, которые составили:

  • - площадь стен - 652 м2;
  • - площадь кровли - 357 м2;
  • - площадь утепленного пола - 139 м2;
  • - площадь холодного пола - 104 м2;
  • - площадь остекления - 166 м2;

Тогда расчетное сопротивление наружной оболочки здания составит: Rоб=(Rст Sст+RокSок+0,8 RкрSкр+ 0,5RоснSосн+ 0,5Rаб Sаб)/Sоб = 2,21*485+ +0,36*166+0,8*357*2,95+0,5(0,57*139+104*0,39)=1,62 м2. 0С /Вт.

Так как полученное значение на 45% превышает требуемую величину, то можно уменьшить толщину теплоизоляционного слоя на стеновых панелях и покрытии мансардного этажа, а также нет необходимости утеплять пола 1го этажа.

Уменьшаем толщину утеплителя на стенах с 80 мм до 60 мм, при этом Rст = 1,82 м2. 0С /Вт; уменьшаем толщину утеплителя в покрытии с 140 мм до 100 мм при этом Rкр = 2,15 м2. 0С /Вт. Расчетное сопротивление всей поверхности пола 1го этажа принимаем Rосн = 0,39 м2. 0С /Вт. Для этого решения теплозащиты:

Rоб=(Rст Sст+RокSок+0,8 RкрSкр+ 0,5RоснSосн+ 0,5Rаб Sаб)/Sоб = 1,82*485+ +0,36*166+0,8*357*2,15+0,5(243*0,39)=1,23 м2. 0С /Вт.

Rоб =1,23 > 1,21 м2. 0С /Вт полученные решения является наиболее экономичным, соответствует европейским требованием к повышенной теплозащите зданий.

Конструктивные решения наружных стен энергоэффективных зданий, применяемые при строительстве жилых и общественных сооружений, можно разделить на 3 группы (рис.1):

    однослойные;

    двухслойные;

    трехслойные.

Однослойные наружные стены выполняются из ячеистобетонных блоков, которые, как правило, проектируют самонесущими с поэтажным опиранием на элементы перекрытия, с обязательной защитой от внешних атмосферных воздействий путем нанесения штукатурки, облицовки и т.д. Передача механических усилий в таких конструкциях осуществляется через железобетонные колонны.

Двухслойные наружные стены содержат несущий и теплоизоляционный слои. При этом утеплитель может быть расположен как снаружи, так и изнутри.

В начале реализации программы энергосбережения в Самарской области в основном применялось внутреннее утепление. В качестве теплоизоляционного материала использовались пенополистирол и плиты из штапельного стекловолокна «URSA». Со стороны помещения утеплители защищались гипсокартоном или штукатуркой. Для защиты утеплителей от увлажнения и накопления влаги устанавливалась пароизоляция в виде полиэтиленовой пленки.

Рис. 1. Виды наружных стен энергоэффективных зданий:

а – однослойная, б – двухслойные, в – трехслойные;

1 – штукатурка; 2 – ячеистый бетон;

3 – защитный слой; 4 – наружная стена;

5 – утеплитель; 6 – фасадная система;

7 – ветрозащитная мембрана;

8 – вентилируемый воздушный зазор;

11 – облицовочный кирпич; 12 – гибкие связи;

13 – керамзитобетонная панель; 14 – фактурный слой.

При дальнейшей эксплуатации зданий выявилось много дефектов, связанных с нарушением воздухообмена в помещениях, появлением темных пятен, плесени и грибков на внутренних поверхностях наружных стен. Поэтому в настоящее время внутреннее утепление используется лишь при установке приточно-вытяжной механической вентиляции. В качестве утеплителей применяются материалы с низким водопоглощением, например, пеноплекс и напыляемый пенополиуретан.

Системы с наружным утеплением имеют ряд существенных преимуществ. К ним относятся: высокая теплотехническая однородность, ремонтопригодность, возможность реализации архитектурных решений различной формы.

В практике строительства находят применение два варианта фасадных систем: с наружным штукатурным слоем; с вентилируемым воздушным зазором.

При первом варианте исполнения фасадных систем в качестве утеплителей в основном используются плиты пенополистирола. Утеплитель от внешних атмосферных воздействий защищен базовым клеевым слоем, армированной стеклосеткой и декоративным слоем.

В вентилируемых фасадах используется лишь негорючий утеплитель в виде плит из базальтового волокна. Утеплитель защищен от воздействия атмосферной влаги фасадными плитами, которые крепятся к стене с помощью кронштейнов. Между плитами и утеплителем предусматривается воздушный зазор.

При проектировании вентилируемых фасадных систем создается наиболее благоприятный тепловлажностный режим наружных стен, так как водяные пары, проходящие через наружную стену, смешиваются с наружным воздухом, поступающим через воздушную прослойку, и выбрасываются на улицу через вытяжные каналы.

Трехслойные стены, возводимые ранее, применялись, в основном, в виде колодцевой кладки. Они выполнялись из мелкоштучных изделий, расположенных между наружным и внутренним слоями утеплителя. Коэффициент теплотехнической однородности конструкций относительно невелик (r < 0,5) из-за наличия кирпичных перемычек. При реализации в России второго этапа энергосбережения достичь требуемых значений приведенного сопротивления теплопередаче с помощью колодцевой кладки не представляется возможным.

В практике строительства широкое применение нашли трехслойные стены с использованием гибких связей, для изготовления которых применяется стальная арматура, с соответствующими антикоррозионными свойствами стали или защитных покрытий. В качестве внутреннего слоя используется ячеистый бетон, а теплоизоляционных материалов – пенополистирол, минеральные плиты и пеноизол. Облицовочный слой выполняется из керамического кирпича.

Трехслойные бетонные стены при крупнопанельном домостроении применяются давно, но с более низким значением приведенного сопротивления теплопередаче. Для повышения теплотехнической однородности панельных конструкций необходимо использовать гибкие стальные связи в виде отдельных стержней или их комбинаций. В качестве промежуточного слоя в таких конструкциях чаще применяется пенополистирол.

В настоящее время широкое применение находят трехслойные сэндвич-панели для строительства торговых центров и промышленных объектов.

В качестве среднего слоя в таких конструкциях применяются эффективные теплоизоляционные материалы – минвата, пенополистирол, пенополиуретан и пеноизол. Трехслойные ограждающие конструкции отличаются неоднородностью материалов в сечении, сложной геометрией и стыками. По конструктивным причинам для образования связей между оболочками необходимо, чтобы более прочные материалы проходили через теплоизоляцию или заходили в нее, нарушая тем самым однородность теплоизоляции. В этом случае образуются так называемые мостики холода. Типичными примерами таких мостиков холода могут служить обрамляющие ребра в трехслойных панелях с эффективным утеплением жилых зданий, угловое крепление деревянным брусом трехслойных панелей с облицовками из древесностружечной плиты и утеплителями и т.д.