Понятие и основные характеристики взрыва. Понятие явления взрыва

Практика показывает, что последствия взрывов криминальной природы многоплановы и нередко катастрофичны (смерть людей и животных, причинение увечий и многочисленных травм потерпевшим, разрушение и полное уничтожение зданий, сооружений, транспортных средств, экосистем и других объектов). К этому нередко добавляются возникающие в результате взрывов пожары и серьезные психические травмы людей. Являясь последствием вызвавшей его причины, взрыв в данном случае играет роль непосредственной причины указанных общественно опасных последствий .

Взрыв характеризуется внезапным образованием большого объема газов в ограниченном пространстве, сопровождается высокой температурой, резким увеличением давления в окружающей среде и мощной звуковой волной. Образование газов и резкий их выход из ограниченного объема является главным признаком взрывов. Взрывы принято классифицировать на: химические, механические и ядерные .

Химический взрыв происходит в результате химической реакции (горения, детонации) быстрого сгорания взрывчатых составов и почти мгновенного образования газов, объем которых во много раз превышает объем самих взрывчатых составов. В результате взрыва его продукты (газы) имеют большую температуру (несколько тысяч градусов) и огромное давление (от единиц до сотен тысяч атмосфер). Принято различать два основных типа химических взрывов: а) взрывы специально изготовленных составов и смесей - ВВ; б) взрывы смешанных с воздухом газов (например, метана, пропан-бутана, ацетилена и др.), а также легко воспламеняющейся, взвешенной в воздухе пыли некоторых твердых материалов (угольная, мучная, табачная, алюминиевая, древесная пыль и т.п.).

Для взрыва ВВ не требуется кислород или воздух. В их состав входят два компонента: а) горючие вещества, содержащие водород, азот, углерод, серу и др.; б) окислители - вещества с высоким содержанием кислорода. Такие ВВ принято называть конденсированными, т.е. компактными, их можно использовать в любой среде - в грунте, под водой, в герметичном корпусе.

Механические взрывы (техногенные ) в большинстве случаев возникают в результате разрыва корпуса резервуара при увеличении давления внутри него (взрыв котла, не имеющего клапана для сброса давления, заполняемых емкостей без контроля за давлением и др.).

Ядерный взрыв - результат расщепления или соединения ядер атомов, при которых образуется значительная энергия. Ее выход сопровождается огромным увеличением температуры и давления газов, что в сотни и тысячи раз превышает аналогичные показатели химического взрыва.

Таким образом, взрыв в широком смысле этого слова представляет собой процесс весьма быстрого физического или химического превращения веществ, сопровождающийся переходом потенциальной энергии в механическую работу. Работа, совершаемая при взрыве, обусловлена быстрым расширением газов или паров, независимо от того, существовали ли они до или образовались во время взрыва. Самым существенным признаком взрыва является резкий скачок давления в среде, окружающей место взрыва. Это служит непосредственной причиной разрушительного действия взрыва.

Наиболее характерным признаком взрыва, резко отличающим его от обычных химических реакций, является большая скорость протекания процесса. Переход к конечным продуктам взрыва происходит за стотысячные или даже миллионные доли секунды. Такой процесс протекает настолько быстро, что практически вся энергия успевает выделиться в объеме, занятом самим ВВ, что и приводит к ее высокой концентрации, которая не достижима в условиях обычного протекания химических реакций (горение дров, бензина и др.). Одна из причин взрывов - применение ВВ, при этом заметим, что взрывы могут быть связаны не только с их применением. Причиной техногенных взрывов могут быть: пыль, образовавшаяся в производственных условиях при механическом дроблении сырья и других материалов, при горении топлива или при конденсации паров (в шахтах, рудниках, других объектах горнодобывающей промышленности, на мукомольных, текстильных предприятиях и сахарных заводах). Взрывы без применения ВВ (техногенные) происходят и на объектах, где используются аппараты и сосуды, работающие под давлением, и др.

Основное внимание в нашей работе уделяется рассмотрению химических взрывов, т.е. взрывов специальных ВВ и ВУ. Главной отличительной особенностью таковых является то, что они представляют собой составы и смеси, специально изготовленные для целенаправленного использования - для производства взрыва.

Под взрывом взрывчатых веществ принято понимать самораспро- страняющееся с большой скоростью химическое превращение, протекающее с выделением большого количества тепла и образованием газообразных продуктов.

При химическом взрыве ВВ мгновенно переходит из твердого состояния в газообразную смесь. Иными словами, вещество, заполняющее пространство, в котором происходит освобождение энергии, превращается в сильно нагретый газ с очень высоким давлением. Этот газ с большой силой воздействует на окружающую среду, вызывая ее движение. Взрывы в твердой среде сопровождаются ее разрушением и дроблением. Основными факторами, характеризующими взрыв, являются:

  • 1) большая скорость взрывчатого превращения (горения);
  • 2) выделение большого количества газов;
  • 3) выделение большого количества тепла (высокая температура). Взрывчатое вещество при взрыве выделяет энергию за счет того, что

небольшой объем твердого или жидкого ВВ превращается в огромный объем газов, нагретых до температуры в тысячи градусов. Для разных типов ВВ объем выделяющихся газов на 1 кг ВВ, имеющий начальный объем не более 0,8-1 л, составляет от 300 до 1000 л и более. Образовавшиеся при взрыве горячие газообразные продукты распада ВВ начинают расширяться, производя механическую работу. Таким образом, ВВ имеют запас скрытой энергии, освобождающейся в процессе реакции взрыва.

Движение воздуха, порожденное взрывом, при котором происходит резкое повышение давления, плотности и температуры, называют взрывной волной. Фронт взрывной волны распространяется с большой скоростью, в результате чего область, охваченная ее движением, быстро расширяется. Скачкообразное изменение давления, плотности, скорости движения на фронте взрывной волны, распространяющееся со скоростью, превышающей скорость звука в среде, представляет собой ударную волну.

Взрыв производит механическое воздействие на объекты, расположенные на различных расстояниях от центра взрыва. По мере удаления от центра механическое воздействие взрывной волны ослабевает.

В зависимости от условий протекания химической реакции процессы взрывчатого превращения могут распространяться с различной скоростью и обладать существенными качественными различиями. По характеру и скорости своего распространения все взрывные процессы делятся на: горение, взрыв, детонацию.

Горение - процесс взрывчатого превращения, обусловленный передачей энергии от одного слоя ВВ к другому (свойство теплопроводности) и излучением тепла газообразными продуктами. Процесс горения ВВ протекает сравнительно медленно, со скоростью от долей сантиметра до нескольких метров в секунду. На открытом воздухе этот процесс протекает сравнительно «вяло» и не сопровождается сколько- нибудь значительным звуковым эффектом. В ограниченном объеме этот процесс протекает значительно энергичнее и характеризуется более быстрым нарастанием давления и способностью образующихся при этом газов производить работу метания, подобную тому, как при выстреле. Для горения в замкнутом пространстве нужно, чтобы в нем содержался окислитель. Горение является характерным видом взрывчатого превращения порохов.

Взрыв, по сравнению с горением, представляет собой качественно иную форму протекания реакции. Отличительными его чертами являются: резкий скачок давления, переменная скорость распространения процесса, измеряемая тысячами метров в секунду и сравнительно мало зависящая от внешних условий. Характер действия взрыва - резкий удар газов по окружающей среде, вызывающий дробление и сильные деформации предметов. Как и при горении, при взрывчатом разложении ВВ скорость реакции является переменной и зависит от давления и температуры. Скорость горения в этом случае достигает сотен метров в секунду, но не превышает скорости звука. При дальнейшем самоуско- рении реакции взрывное разложение переходит в детонацию.

Детонация представляет собой взрыв, распространяющийся с максимально возможной для данного ВВ и данных условий скоростью, превышающей скорость звука в этом веществе. Детонация не отличается по характеру и сущности явления от взрыва, но представляет собой его стационарную форму. Скорость детонации при заданных условиях для каждого ВВ является вполне определенной константой и одной из важнейших его характеристик. В условиях детонации достигается максимальное разрушительное действие взрыва. При детонации ВВ возникает бризантный эффект. Скорость детонации непосредственно зависит от вида ВВ, его плотности и физического состояния, а также оболочки ВУ. Скоростью детонации принято считать скорость распространения ударной волны по ВВ. При этом она не равна скорости химического превращения вещества. Для разных веществ она лежит в пределах 1000-10 000 м/с. Ее значение определяется не только химическим составом, но и физическими характеристиками заряда: плотностью, диаметром, агрегатным состоянием, температурой и др. Наличие оболочки (по сути создание закрытого минипространства, заполненного спрессованным ВВ) значительно увеличивает детонацию .

Возбуждение взрывчатого превращения ВВ называют инициированием. Для этого требуется сообщить ему необходимое количество энергии - задать начальный импульс. Это может быть достигнуто путем:

  • а) механического воздействия (удар, трение и др.);
  • б) тепловым (нагрев, искра, пламя);
  • в) химическим (соединение некоторых компонентов для реакции горения с выделением тепла или пламени);
  • г) взрывом другого заряда (взрывателя с инициирующим ВВ, другого ВВ).

Средства инициирования подразделяют на средства:

  • 1) воспламенения;
  • 2) детонирования.

Средства воспламенения - это устройства для возбуждения горения зарядов и порохов за счет воздействия на них тепловой энергии в виде нагрева нити накаливания, луча пламени, искрового разряда. Ими являются капсюли-воспламенители накольного или ударного действия, терочные воспламенители, электровоспламенители.

Средства детонирования предназначены для возбуждения детонации бризантных ВВ путем преобразования простого начального импульса во взрывной. К ним относятся капсюли-детонаторы, запалы, электродетонаторы.

Взрыв характеризуется четырьмя основными поражающими действиями, оказывающими влияние на изменения окружающей обстановки: а) бризантное ; б) осколочное; в) термическое ; г) ударная волна.

Бризантное действие проявляется на расстоянии 3-4 радиусов заряда ВУ. Бризантность - это способность ВВ к разрушению (дроблению) окружающей среды. В этой зоне дробление объектов настолько велико, что они превращаются в микрочастицы. Повреждения такого рода происходят за счет динамических напряжений, превышающих пределы прочности разрушающихся материалов, в результате совместного воздействия ударной волны и продуктов детонации. Такое действие характерно для ВУ с ВВ, имеющих значительную скорость детонации и относительно большую плотность. Реакция при детонации идет так быстро, что газообразные продукты с температурой в несколько тысяч градусов оказываются сжатыми в объеме, близком к исходному объему заряда, до давления в сотни тысяч килограмм-силы на квадратный сантиметр . Резко расширяясь, сжатый газ наносит по окружающей среде удар огромной силы. Материалы, находящиеся вблизи от заряда, подвергаются дроблению и сильнейшей пластической деформации (местное бризантное действие взрыва); вдали от заряда разрушения менее интенсивны, но зона, в которой они происходят, гораздо больше (общее фугасное действие взрыва).

Осколочное действие. При взрыве помещенного в оболочку заряда ВВ под действием быстро расширяющихся газов происходит ее разрыв на осколки и их метание. Осколки, образованные за счет разрушения оболочки (корпуса) заряда ВВ, называются первичными. Осколки, образованные за счет бризантного действия взрыва при разрушении предметов, находящихся в непосредственной близости к заряду ВВ (до 20 диаметров оболочки заряда ВВ), называются вторичными. Например, разлет фрагментов корпуса и деталей автомобиля при взрыве заряда ВВ в салоне. В зависимости от состава ВВ и его массы скорость разлета осколков может достигать 2000 м/с. В полете осколки разрушают (пробивают) окружающие предметы, рикошетят, в определенных условиях вызывают воспламенение горючих материалов. Нагрев осколков происходит в момент детонации, а также из-за трения в момент встречи с преградой, например, при пробивании топливного бака автомобиля. При взрыве бризантных ВВ осколки представляют собой мелкие фракции оболочек, при взрыве ВВ пониженной мощности, а также порохов, как правило, образуются крупные осколки без заметного изменения структуры материала оболочки.

Термическое действие, вызванное взрывом, в зависимости от используемого ВВ различается по интенсивности и длительности воздействия на окружающие предметы и материалы. Как правило, взрыв пороха вызывает более длительное зажигательное действие, чем взрыв бризантных ВВ. Бризантные ВВ при взрыве создают более высокую температуру. Термическое воздействие носит кратковременный и локальный характер и по дальности не превышает 10-30 диаметров объема заряда ВВ. На объектах, предметах и материалах, находящихся в непосредственной близости к месту взрыва, если не возникло открытое горение, наблюдаются следы окопчения и плавления.

Ударная волна. При взрыве заряда ВВ практически мгновенно (за тысячные доли секунды) образуются газы высокой температуры (до 50 000° С). Образовавшиеся газы создают в атмосфере вокруг заряда ВВ давление порядка 200 тыс. атм , в результате чего происходит их быстрое расширение, от нескольких сот до тысяч метров в секунду, вызывающее сжатие окружающей атмосферы. В результате образуется сферическая волна расширяющихся газов, оказывающая разрушительное и метательное действие на предметы и объекты, встречающиеся на пути ее распространения. По мере удаления от точки взрыва ударная волна постепенно теряет скорость распространения и давление в ее фронте, в результате чего переходит в звуковую волну. Ударная волна характеризуется двумя фазами - положительного и отрицательного давления. В момент взрыва возникает давление продуктов взрыва (газовой смеси), что вызывает сжатие окружающего воздуха. Слой продуктов взрыва и сжатого воздуха в некоторых случаях наблюдается в виде быстро распространяющегося красного или белого круга, который условно называют фронтом ударной волны. Этот фронт и формирует фазу положительного давления.

При своем движении фронт ударной волны, а вслед за ним волна избыточного (положительного) давления оказывает разрушительное и метательное воздействие на объекты, оказавшиеся на его пути. Фаза избыточного давления продолжается доли секунды. В ходе распространения ударной волны от точки взрыва давление в ее фронте постепенно уменьшается до величины давления окружающей среды, происходит сжатие и вытеснение воздуха, находящегося до взрыва вокруг заряда ВВ. В результате вытеснения воздуха вокруг места взрыва образуется разреженное пространство, именуемое частичным вакуумом (рис. 4.2).

а - фаза сжатия (положительного, избыточного давления); б - фаза разряжения (отрицательного давления, «всасывания»)

После полного затухания ударной волны вытесненный сжатый воздух начинает движение в обратную сторону, стремясь заполнить образовавшийся вакуум. Этот процесс называется фазой отрицательного давления или давлением всасывания. Двигающийся в сторону взрыва воздух имеет скорость ниже ударной волны, но способен к дополнительному разрушению объектов и перемещению отдельных предметов. Этот фактор необходимо учитывать при осмотрах мест происшествий, связанных со взрывами.

Кроме рассмотренных воздействий, взрыв сопровождают звуковая волна, световая вспышка и электромагнитное воздействие.

Взрывчатые вещества. Взрывчатыми называются вещества, способные к взрывчатым превращениям. Для них характерна одноразовость действия, т.е. после реакции взрыва вещество перестает существовать как взрывчатое - оно переходит в качественно другое состояние.

Взрывчатые вещества подразделяют на:

  • 1) инициирующие, побуждающие взрыв (первичные ВВ);
  • 2) бризантные (вторичные ВВ);
  • 3) метательные (пороха);
  • 4) пиротехнические составы, способные к взрывчатому превращению.

Инициирующие ВВ (от лат. initium - начало) - высокочувствительные, легко взрывающиеся под влиянием тепловых или механических воздействий (удар, трение, воздействие огня). Они обладают высокой чувствительностью к внешним воздействиям и характеризуются малым временем перехода реакции горения в детонацию. Эти ВВ используются в качестве инициаторов взрывных процессов для возбуждения детонации других ВВ. Вследствие указанных свойств они применяются исключительно для снаряжения средств инициирования - капсюлей, капсюлей-детонаторов. Наиболее распространенными представителями этой группы являются гремучая ртуть, азид свинца, тринитроре- зорцинат свинца (ТНРС).

Для снаряжения капсюлей-воспламенителей используют механические смеси таких веществ, наиболее распространенными из которых являются гремучая ртуть, хлорат калия (бертолетова соль) и трехсернистая сурьма (антимоний). Под действием удара или накола капсюля-воспламенителя происходит воспламенение капсюльного состава с образованием луча огня, способного воспламенить порох или вызвать детонацию инициирующего ВВ.

Для инициирования детонации основного заряда ВУ применяются средства взрывания. Средства взрывания представляют собой сочетание средств инициирования и устройств, формирующих первоначальные импульсы. Так, запалы, как правило, включают капсюль-воспламенитель, порождающий горение от накола. От него пламя огня по огнепроводной трубке замедлителя (в качестве такового часто используют дымный порох) передается к капсюлю-детонатору. Капсюль-детонатор содержит небольшое количество мощного инициирующего ВВ, которое взрывается от пламени, поступившего из замедлителя, и инициирует детонацию основного (передает импульс бризантному веществу) заряда ВУ.

Бризантные ВВ (от фр. brizer - дробить) - вещества, для которых характерным видом взрывчатого превращения является детонация. Бризантные ВВ более инертны, чем инициирующие, их чувствительность к внешним воздействиям гораздо меньше. Их горение может перейти в детонацию только при наличии прочной оболочки либо большого количества ВВ. Большинство из них слабо горят при поджоге открытым огнем, выделяя черный дым и не переходя в детонацию.

Сравнительно невысокая чувствительность бризантных ВВ к удару, трению и тепловому воздействию, а следовательно, достаточная безопасность, обусловливают удобство их практического применения. Бризантные ВВ применяются в чистом виде, а также в виде сплавов и смесей друг с другом.

Основной режим их взрывного превращения - детонация, возбуждаемая небольшим зарядом инициирующего ВВ. Бризантные ВВ применяют для взрывных работ, а также в снарядах и других боеприпасах. Для возбуждения взрыва в них используют взрыв малых количеств (не более нескольких грамм) инициирующих ВВ. Среди бризантных наиболее распространены индивидуальные ВВ: ТЭН (тетранитропен- таэритрит, пентрит), гексоген, тетрил, тротил (тринитротолуол (ТНТ), тол). Бризантные ВВ являются основным классом ВВ, которые применяются для снаряжения мин, снарядов, ракет, гранат, бомб и т.д.

В свою очередь, по мощности их можно разделить на ВВ:

  • 1) повышенной мощности (нитроглицерин, тетрил, ТЭН, гексоген);
  • 2) нормальной мощности (тол, тротил, пластичные ВВ);
  • 3) пониженной мощности (промышленные ВВ - динамиты, аммониты, аммоналы - смеси на основе аммиачной селитры).

Чаще всего, как показывает судебная практика, преступники используют ВВ заводского изготовления - военные: тротил (тринитротолуол, тол); промышленные: аммонал, аммонит. Реже - самодельные, как правило, изготовленные на основе аммиачной селитры.

Метательные ВВ или пороха - вещества, для которых основной формой взрывчатого превращения является горение, не переходящее в детонацию даже при высоких давлениях, развивающихся в условиях выстрела. Эти вещества пригодны для сообщения пуле или снаряду движения в канале ствола оружия (рис. 4.3). Однако при значительной массе и размещении в герметически прочной оболочке метательные ВВ могут сгорать с эффектом взрыва (взрывное горение) и нередко используются преступниками в качестве боевого заряда в самодельном ВУ.

Пиротехнические составы предназначены для создания светового, дымового или звукового эффектов. Большинство пиротехнических составов представляют собой механическую смесь окислителей (хлораты, перхлораты, нитраты и пр.) и горючих веществ (крахмал, мука, сахар, сера и пр.). Скорость горения таких веществ - от долей миллиметра до нескольких сантиметров в секунду, что обеспечивает их минимальные взрывчатые свойства. Однако некоторые хлорат- ные и перхлоратные пиротехнические составы, а также некоторые составы, содержащие бризантные ВВ при определенных условиях способны к детонационному превращению. Наибольшие скорости горения при воспламенении пиротехнических составов наблюдаются в условиях замкнутого объема.


Рис. 4.3.

а - горения метательного ВВ (пороха) в металлическом цилиндре, накрытом диском; б - детонации бризантного ВВ в металлическом цилиндре,

накрытом диском

В самодельных ВУ они могут эффективно выполнять функции ВВ. Относительная доступность приобретения отдельных компонентов, необходимых для изготовления пиротехнических составов, обусловливает их наиболее частое использование. На практике нередко встречаются самодельные ВУ на основе зажигательной массы спичечных головок - пиротехнической смеси промышленного изготовления; взрывные свойства таких устройств близки к однотипным ВУ на основе дымного пороха.

По физическому состоянию ВВ могут быть твердыми, пластичными или жидкими. Твердые в свою очередь делятся на монолитные и сыпучие, изготовленные в виде порошков или гранул. К монолитным относится литой тротил или литые смеси тротила с аммиачной селитрой и алюминиевой пылью. В настоящее время изготавливаются в малых количествах из-за неудобства их использования. В большинстве случаев твердые ВВ используют в сыпучем состоянии в виде порошков и гранул. К сыпучим твердым ВВ относят аммониты, гранулированный тротил или сплав тротила с алюминиевым порошком - алюмотол, смеси гранулированной аммиачной селитры с нефтепродуктами или тротилом и некоторыми другими горючими добавками.

Пластичные ВВ обычно состоят из смеси твердых компонентов с жидкой желатинированной массой и по консистенции напоминают крутое, а в некоторых случаях жидкое тесто. Особенностью пластичных ВВ является их способность к пластической деформации, благодаря которой во взрывных камерах любой конфигурации можно получить высокую плотность заряжания.

При взрывных работах часто применяют ВВ разной консистенции на водной основе - водонаполненные ВВ. Твердыми компонентами таких ВВ чаще всего являются порошкообразный, чешуированный или гранулированный тротил и аммиачная селитра. К такому виду ВВ относятся акваниты и так называемые льющиеся ВВ - акватолы. Примером жидких ВВ являются нитроглицерин, нитрогликоль и некоторые другие нитроэфиры, которые используются в промышленности только в качестве компонентов взрывчатых смесей или порохов.

Основные характеристики ВВ. При практическом использовании ВВ существенное значение имеют следующие их характеристики:

  • а) чувствительность к внешним воздействиям;
  • б) энергия (теплота) взрывчатого превращения;
  • в) скорость детонации;
  • г) бризантность;
  • д) фугасность (работоспособность).

Чувствительностью ВВ называется способность их к взрывчатому превращению под влиянием внешних воздействий. Ее принято характеризовать минимальным количеством энергии, которое необходимо затратить для того, чтобы возбудить процесс взрывчатого превращения. Такие воздействия принято называть начальными импульсами. Практический интерес представляет чувствительность ВВ к удару, тепловым импульсам, лучу огня.

Под энергией взрывчатого превращения (потенциальной энергией) понимают количество тепла, которое выделяется при взрыве 1 кг ВВ в постоянном объеме без совершения механической внешней работы. Энергия взрывчатого превращения обычно выражается в Дж/кг или в ккал/кг . Теплота реакции взрывчатого превращения является чрезвычайно важной характеристикой ВВ: чем больше тепла выделится при взрыве, тем выше работоспособность ВВ. Превращение тепла в механическую работу идет со значительными потерями (например, часть тепла всегда тратится на разогрев окружающей среды). Кроме того, химическое превращение ВВ в реальных условиях никогда не бывает полным, так как при детонации происходит частичный разброс ВВ. Этот фактор следует учитывать при осмотрах мест происшествий.

Скорость детонации - скорость распространения детонационной волны по заряду взрывчатого вещества (ВВ).

Под бризантностью понимают способность ВВ дробить при взрыве соприкасающиеся с ним предметы (металл, горные породы и т.д.). Бризантность ВВ зависит от скорости его детонации: чем больше скорость детонации, тем больше (при прочих равных условиях) бризантность данного ВВ.

Фугасность ВВ характеризуется разрушением и выбросом материала той или иной твердой среды (чаще всего грунта), в которой происходит взрыв. Мерой фугасности служит объем воронки выброса, отнесенный к массе заряда испытуемого ВВ. Следами фугасного действия взрыва являются: воронка в грунте и на иных материалах, перемещение окружающих предметов, разрушение, повреждение и изменение формы отдельных элементов в области действия взрыва, поражения людей различной степени тяжести. Размеры зоны фугасного воздействия зависят от массы ВВ.

Взрывные устройства - это устройства, специально изготовленные и предназначенные для поражения людей и животных, повреждения различных объектов с помощью взрывной волны или осколков, получающих направленное движение в результате реакции стремительного горения (детонации) ВВ.

Взрывные устройства характеризуют следующие признаки:

  • 1) специально-изготовленные для поражения;
  • 2) использование энергии, получаемой при стремительном горении или детонации ВВ;
  • 3) обладающие достаточным поражающим действием;
  • 4) одноразовость использования.

По способу изготовления ВУ делятся на:

  • а) промышленные (заводские);
  • б) самодельные;
  • в) переделанные.

Абсолютное большинство ВВ изготавливают заводским способом, и практически все мощные ВВ заводского изготовления характеризуются оптимальным соотношением компонентов, что позволяет участвовать в реакции всему веществу без остатка. Взрывные устройства промышленного (заводского) изготовления производятся на специальных предприятиях в соответствии с утвержденной технической документацией, отличаются высокой степенью обработки и наличием маркировочных (отличительных) обозначений (знаков).

Для снаряжения заводских ВУ используются различные ВВ, от которых зависит мощность и назначение. Каждому виду устройств соответствует определенное средство взрывания, срабатывающее при конкретных внешних воздействиях или в требуемый момент времени.

Самодельные ВУ часто изготавливаются на основе самодельных ВВ. Взрывчатые вещества самодельного изготовления обычно характеризуются неоптимальным массовым соотношением компонентов. Поэтому обычно после их взрывчатого разложения остается значительное количество непрореагировавшего вещества. Чаще всего такие ВВ изготавливаются на основе механических смесей. Обычно для этих целей используется гранулированная аммиачная селитра в смеси с алюминиевым порошком, соляровым маслом, мазутом, торфом, угольной или древесной мукой и др. Они относятся к слабым ВВ и характеризуются слабой устойчивостью к влаге, слеживаемостью и т.д. Как правило, они изготавливаются в одном или нескольких экземплярах, в домашних условиях с использованием обычных инструментов из подручных материалов и доступных веществ, либо деталей или ВВ старых боеприпасов. В конструктивном плане и по принципу действия они нередко являются копиями известных образцов ручных гранат или мин. Самодельные ВУ чаще всего изготавливают осколочного, осколочно-фугасного или фугасного действия.

По материалам и характеру изготовления такие устройства делятся:

  • 1) на полностью самодельные, когда все элементы сделаны самодельным способом, иногда с использованием станочного и сварочного оборудования, а потом собраны вручную (например, граната со стальным корпусом, выточенным на токарном станке, снаряженная самодельным ВВ, состоящим из соскобленной и измельченной массы со спичек, и самодельным средством воспламенения);
  • 2) собранные с использованием элементов промышленного производства, но не относящихся к конструкциям промышленных ВУ (например, граната, изготовленная на основе баллона из-под огнетушителя, снаряженная самодельным ВВ, состоящим из соскобленной и измельченной массы со спичек, и электровоспламенителем в виде лампочки без колбы с припаянными к цоколю проводами);
  • 3) собранные с использованием некоторых элементов ВУ промышленного изготовления (например, унифицированный запал для ручной гранаты и самодельное ВВ);
  • 4) состоящие из элементов ВУ промышленного изготовления, но непромышленной сборки (это, как правило, ВУ гражданского назначения, сделанные из зарядов ВВ в виде патронов, шашек и средств взрывания, которые соединяются для производства взрыва).

Переделанные ВУ представляют собой устройства заводского изготовления, подвергшиеся реконструкции самодельным путем (например, переделывание боеприпасов времен ВОВ, изменение конструкции взрывателя с целью сокращения времени горения пиротехнического замедлителя). В результате переделки изменяются отдельные элементы ВУ, и оно приобретает новое свойство, качество или назначение.

Взрывные устройства военные - это боеприпасы взрывного действия, предназначенные для уничтожения живой силы и техники в бою. Они в свою очередь подразделяются на три группы:

  • 1) основного назначения - служат для поражения людей и объектов. Это ручные гранаты, выстрелы к гранатометам, артиллерийские снаряды и мины, авиабомбы, инженерные боеприпасы и т.д.;
  • 2) специального назначения - помогающие выполнению боевой задачи (используемые для освещения, задымления и т.д.);
  • 3) вспомогательного назначения - предназначены для учебнобоевой подготовки войск и полигонных испытаний военной техники (взрывпакеты, электровзрывпакеты, имитационные патроны и др.).

Промышленные ВУ представляют собой конструктивно оформленные заряды ВВ. Эти заряды готовы к применению. Для инициирования взрыва им необходимы средства взрывания (детонаторы).

Характер поражающих элементов:

  • а) снаряженные поражающими элементами в виде шрапнели, картечи, дроби, шариков от подшипников, болтов, гаек, рубленых кусков проволоки и т.д., которые размещаются на поверхности ВВ, в его массе или отдельно;
  • б) осколков заданного дробления, которые получаются за счет механического послабления оболочки корпуса путем нанесения рифлений (углублений) на ее внешней поверхности (типичным видом такой оболочки является корпус гранат РГО, Ф-1);
  • в) осколков естественного дробления, когда разрушение оболочки обусловлено конструктивными особенностями устройства и величиной заряда (в этих случаях оболочка разрушается в местах наибольших концентраций напряжений, например, по шву).

По способу поражающего действия на окружающие объекты все ВУ подразделяются:

  • 1) на фугасные;
  • 2) осколочные;
  • 3) осколочно-фугасные;
  • 4) кумулятивные.

Взрывные устройства фугасного действия используются, когда объект поражения находится в непосредственном или близком контакте с устройством. Это связано с ограниченной зоной воздействия продуктов взрыва, а на больших расстояниях - давлением и скоростным напором воздушной ударной волны. Взрывные устройства осколочного действия при одинаковых с фугасными массогабаритных параметрах имеют зону поражения осколочными элементами в десятки и сотни раз большую, чем зона воздействия ударной волны фугасного заряда.

Кумулятивное действие ВУ заключается в поражении (пробитии) объектов не за счет кинетической энергии снаряда, а за счет «мгновенного» сосредоточенного воздействия высокоскоростной кумулятивной струи, образующейся при обжатии кумулятивной воронки взрывом заряда ВВ.

По способу управления они делятся:

  • 1) на управляемые, когда взрыв осуществляется по команде, передаваемой с помощью радиосигнала или по проводам;
  • 2) неуправляемые, срабатывающие при воздействии объекта поражения на чувствительный элемент (взрыватель, замыкатель) или после истечения установленного срока замедления (например, по времени замедления запала).

По возможности обезвреживания их можно разделить:

  • 1) на обезвреживаемые;
  • 2) необезвреживаемые.

В необезвреживаемом ВУ устанавливается механизм неизвлекае- мости (различные датчики - инерционный, обрывной, оптический и т.д.), который предназначен для приведения ВУ к взрыву при попытке его обезвреживания.

Основными конструктивными составляющими любого ВУ являются (рис. 4.4):

  • а) заряд ВВ;
  • б) взрыватель.

Рис. 4.4.

Основной боевой заряд составляют вторичные ВВ (бризантные), до второй половины XIX в. в качестве таковых использовались пороха.

Инициирующие вещества (первичные ВВ), как правило, входят в качестве основного компонента детонатора - составной части взрывателя.

Взрыватели - это устройства, предназначенные для возбуждения детонации (взрыва) зарядов боеприпасов (снаряда, мины, бомбы и др.) при встрече с целью, в районе цели или в требуемой точке траектории полета. Они предназначены для воспламенения порохов, пиротехнических составов и детонации бризантных ВВ. Взрыватели включают детонатор и исполнительное устройство.

Исполнительные устройства взрывателей подразделяют:

  • 1) на ударные (срабатывают от удара боеприпаса в преграду);
  • 2) дистанционные (срабатывают через заданный промежуток времени);
  • 3) управляемые (срабатывают при получении внешнего сигнала).

Общим в устройстве взрывателей является наличие: детонационной

цепи (совокупности элементов, обеспечивающих возбуждение детонации разрывного заряда); исполнительных механизмов (ударников, электроконтактов, поршней и др.), вызывающих воспламенение или взрыв капсюлей-воспламенителей или капсюлей-детонаторов; предохранительных устройств (мембран, колпачков, шариков, чек и др.), обеспечивающих безопасность при служебном обращении.

Возбуждение детонации взрывателя осуществляется (рис. 4.5):

  • а) механически (капсюль-воспламенитель или капсюль-детонатор срабатывает за счет энергии ударника);
  • б) трением (силы трения) при выдергивании терки;
  • в) при помощи электрической искры;
  • г) химическим путем (вылившийся из разбитой ампулы реагент воспламеняет горючий состав).

Рис. 4.5.

  • 1 - капсюль-детонатор; 2 - втулка замедлителя; 3 - замедлитель;
  • 4 - капсюль-воспламенитель; 5 - соединительная втулка; 6 - шайба ударника; 7 - направляющая шайба; 8 - корпус ударного механизма (трубка);
  • 9 - ударник; 10 - боевая пружина; 11 - предохранительная чека с кольцом;
  • 12 - спусковой рычаг (скоба); 13 - ударный механизм; 14 - запал

Механический способ взрывания осуществляется путем воздействия ударного элемента (бойка, ударника) по капсюльному составу воспламенителя, который является элементом запала. По принципу действия механический способ взрывания подобен схеме ударно-спускового механизма огнестрельного оружия, когда от удара бойка срабатывает капсюль боевого патрона. Отличие лишь в том, что вместо порохового заряда патрона инициируется ВВ капсюля-детонатора, входящего в состав запала. Разновидностью механического взрывателя являются взрыватели, работающие по принципу терки, в которых тепло, воспламенение и искра возникают за счет трения специальных частей устройства.

Электрический способ взрывания основан на образовании искры, инициируемой электрическим током. Используется в электродетонаторах, часто используемых для дистанционного подрыва промышленных ВВ. Для такого способа взрывания необходимы провода и источник электроэнергии (батарейки, динамо-машина и др.), обеспечивающие подачу электричества к детонатору. При включении тока мостик накаливания электровоспламенителя нагревается, нанесенная на него навеска пиротехнического состава воспламеняется и дает луч огня, вызывающий взрыв инициирующего состава чашечки, который в свою очередь возбуждает детонацию основного заряда капсюля-детонатора. Взрыв последнего служит инициирующим детонационным импульсом для зарядов ВВ.

Химический способ взрывания основан на химической активности некоторых взрывчатых (прежде всего, инициирующих) составов с определенными веществами. При контакте этих веществ происходит химическая реакция с интенсивным выделением тепла, в результате чего происходит взрыв. В безопасном положении активный реагент отделен от инициирующего взрывчатого состава особым изолятором (металлической или пластмассовой мембраной). В боевом положении при растворении или разрыве мембраны от нажатия происходит соединение пары активных веществ, которые вступают в химическую реакцию, воспламеняются и выделяют тепло, инициируя взрыв.

Детонатор - элемент ВУ, содержащий заряд ВВ, более чувствительный к внешним воздействиям, чем ВВ основного заряда. Детонатор предназначен для надежного возбуждения взрыва основного заряда артиллерийского снаряда, мины, авиабомбы, боевой части ракеты, торпеды, а также подрывного заряда. Это устройство, которое вызывает взрыв основной массы взрывчатки.

Большинство ВУ имеют оболочку или корпус, которые выполняют такие функции, как:

  • 1) создание замкнутого объема для производства взрыва;
  • 2) обеспечение поражающего осколочного действия;
  • 3) придание определенной формы заряду ВВ;
  • 4) компоновка, соединение частей ВУ;
  • 5) защита ВВ от внешних воздействий;
  • 6) маскировка;
  • 7) удобство транспортировки и крепления, установки на месте взрыва.

Взрывное устройство может иметь несколько оболочек, каждая из которых способна выполнять одну или несколько функций (рис. 4.6).


Рис. 4.6.

а - обычной - в качестве поражающих элементов выступают осколки дробления корпуса и специального вкладыша (РГД-5); б - с корпусом, изготовленным с применением технологий порошковой металлургии (путем спекания мелких шариков)

При взрыве корпус ВУ дробится на осколки, размер и форма которых зависят от конкретного вида ВУ. Так, корпуса противопехотных гранат изготавливаются с расчетом дробления их при взрыве на осколки различной массы и величины в зависимости от их более узкого целевого назначения и условий применения. Гранаты, дающие мелкие осколки, поражающие человека в радиусе до 25 м, называются наступательными (РГ-42, РГД-5, РГН), дающие крупные осколки и поражающие человека в радиусе до 100-200 м - оборонительными (Ф-1, РГО).

  • Беляков А. А. Криминалистическая теория и методика выявления и расследованияпреступлений связанных со взрывами: дис. ... д-ра юрид. наук. Екатеринбург, 2003.
  • 1 ккал = 4,1868 103Дж.

Взрыв – это весьма быстрое изменение химического (физического) состояния взрывчатого вещества, сопровождающееся выделением большого количества тепла и образованием большого количества газов, создающих ударную волну, способную своим давлением вызывать разрушения.

Взрывчатыми веществами (ВВ) – особые группы веществ, способные к взрывчатым превращениям в результате внешних воздействий.
Различают взрывы :

1.Физический – высвобождающаяся энергия является внутренней энергией сжатого или сжиженного газа (сжиженного пара). Сила взрыва зависит от внутреннего давления. Возникающие разрушения могут вызываться ударной волной от расширяющегося газа или осколками разорвавшегося резервуара (Пример: разрушение резервуаров со сжатым газом, паровых котлов, а также мощные электрические разряды)

2.Химический – взрыв, вызванный быстрой экзотермической химической реакцией, протекающей с образованием сильно сжатых газообразных или парообразных продуктов. Примером может служить взрыв дымного пороха, при котором происходит быстрая химическая реакция между селитрой, углем и серой, сопровождающаяся выделением, значительного количества теплоты. Образовавшиеся газообразные продукты, нагретые за счет теплоты реакции до высокой температуры, обладают высоким давлением и, расширяясь, производят механическую работу.

3.Атомные взрывы . Быстропротекающие ядерные и ли термоядерные реакции (реакции деления или соединения атомных ядер), при которых освобождается очень большое количество теплоты. Продукты реакции, оболочка атомной или водородной бомбы и некоторое количество окружающей бомбу среды мгновенно превращается в нагретые до очень высокой температуры газы, обладающие соответственно высоким давлением. Явление сопровождается колоссальной механической работой.

Химические взрывы подразделяются на конденсированные и объемные взрывы.

А) Под конденсированными взрывчатыми веществами понимаются химические соединения и смеси, находящиеся в твердом или жидком состоянии, которые под влиянием определенных внешних условий способны к быстрому самораспространяющемуся химическому превращению с образованием сильно нагретых и обладающих большим давлением газов, которые, расширяясь, производят механическую работу. Такое химическое превращение ВВ принято называть взрывчатым превращением.

Возбуждением взрывчатого превращения ВВ называется инициированием. Для возбуждения взрывчатого превращения ВВ требуется сообщить ему с определенной интенсивностью необходимое количество энергии (начальный импульс), которая может быть передана одним из следующих способов:
- механическим (удар, накол, трение);
- тепловым (искра, пламя, нагревание);
- электрическим (нагревание, искровой разряд);
- химическим (реакции с интенсивным выделением тепла);
- взрывом другого заряда ВВ (взрыв капсюля-детонатора или соседнего заряда).

Конденсированные ВВ подразделяются на группы :

Характеристика. Примеры вещества.

Чрезвычайно опасные вещества

Нестабильны. Взрываются даже в самых малых количествах. Трихлорид азота; некоторые органические перекисные соединения; ацетиленид меди, образующийся при контакте ацетилена с медью
или медесодержащим сплавом

Первичные ВВ

Менее опасные вещества. Инициирующие соединения. Обладают очень высокой чувствительность к удару и тепловому воздействию. Используются в основном в капсулях-детонаторах для возбуждения детонации в зарядах ВВ. Азид свинца, гремучая ртуть.

Вторичные ВВ (бризантные ВВ)

Возбуждение детонации в них происходит при воздействии сильной ударной волны. Последняя может создаваться в процессе их горения или с помощью детонатора. Как правило, ВВ этой группы сравнительно безопасны в обращении и могут храниться в течение длительных промежутков времени. Динамиты, тротил, гексоген, октоген, централит.

Метательные ВВ, пороха

Чувствительность к удару очень мала, относительно медленно горят.
Баллиститные пороха – смесь нитроцеллюлозы, нитроглицерина и других технологических добавок.
Загораются от пламени, искры или нагрева. На открытом воздухе быстро горят. В замкнутом сосуде взрываются. На месте взрыва черного пороха, содержащего азотнокислый калий, серу и древесный уголь в отношениях 75:15:10, остается остаток, содержащий углерод.

Классификацию взрывов можно произвести и по типам химических реакций:

  1. Реакция разложения – процесс разложения, который дают газообразные продукты
  2. Окислительно-восстановительная реакция – реакция, в которой воздух или кислород реагирует с восстановителем
  3. Реакция смесей – пример такой смеси – порох.

Б) Объемные взрывы бывают двух типов:

  • Взрывы облака пыли (пылевые взрывы) рассматриваются как взрывы пыли в штольнях шахт и в оборудовании или внутри здания. Такие взрывоопасные смеси возникают при дроблении, просеве, насыпке, перемещении пылящих материалов. Взрывоопасные пылевые смеси имеют нижний концентрационный предел взрываемости (НКПВ) , определяемый содержанием (в граммах на кубический метр) пыли в воздухе. Так для порошка серы НКПВ составляет 2,3 г/м3. Концентрационные пределы пыли не являются постоянными и зависят от влажности, степени измельчения, содержания горючих веществ.

В основе механизма пылевых взрывов на шахтах лежат относительно слабые взрывы газовоздушной смеси воздуха и метана. Такие смеси считаются уже взрывоопасными при 5%-ной концентрации метана в смеси. Взрывы газовоздушной смеси вызывают турбулентность воздушных потоков, достаточных для того, чтобы образовать пылевое облако. Воспламенение пыли порождает ударную волну, поднимающую еще большее количество пыли, и тогда может произойти мощный разрушительный взрыв.

Меры, применяемые для предупреждения пылевых взрывов:

    1. вентиляция помещений, объектов
    2. увлажнение поверхностей
    3. разбавление инертными газам (СО 2, N2) или порошками силикатными

Пылевые взрывы внутри зданий, оборудования чаще всего происходят на элеваторах, где из-за трения зернышек при их перемещении образуется большое количество мелкой пыли.

  • Взрывы паровых облаков – процессы быстрого превращения, сопровождающиеся возникновением взрывной волны, происходящие на открытом воздушном пространстве в результате воспламенения облака, содержащего горючий пар.

Такие явления возникают при утечке сжиженного газа, как правило, в ограниченных пространствах (помещениях), где быстро растет та предельная концентрация горючих элементов, при которой происходит воспламенение облака.
Меры, применяемые для предупреждения взрывов паровых облаков:

    1. сведение к минимуму использования горючего газа или пара
    2. отсутствие источников зажигания
    3. расположение установок на открытом, хорошо проветриваемой местности

Наиболее часто ЧС, связанные с взрывами газа , возникают при эксплуатации коммунального газового оборудования.

Для предупреждения таких взрывов ежегодно проводят профилактику газового оборудования. Здания взрывоопасных цехов, сооружений, часть панелей в стенах делают легкоразрушаемыми, а крыши – легкосбрасываемыми.

Под взрывом в физике понимают широкий круг явлений, связанных с выделением большого количества энергии в ограниченном объёме за очень короткий промежуток времени.

Кроме взрывов обычных, конденсированных химических и ядерных взрывчатых веществ, к взрывным явлениям относятся:

мощные электрические разряды, когда в разрядном промежутке выделяется большое количество тепла, под воздействием которого среда превращается в ионизированный газ с высоким давлением;

взрыв металлических проволочек при протекании через них мощного электрического тока, достаточного для быстрого превращения проводника в пар; внезапное разрушение оболочки, удерживающей газ под высоким давлением;

столкновение двух твердых космических тел, движущихся навстречу одно другому со скоростью, измеряемой десятками километров в секунду, когда в результате столкновения телб полностью превращаются в пар с давлением в несколько миллионов атмосфер, и т. д.

Общим признаком для всех этих разнообразных по своей физической природе явлений взрыва служит образование в локальной области зоны повышенного давления с последующим распространением по окружающей эту область среде со сверхзвуковой скоростью взрывной/ударной волны, представляющей собой прямой скачок давления, плотности, температуры и скорости среды.

При воспламенении горючих газообразных смесей и аэрозолей по ним распространяется пламя, представляющее собой волну химической реакции в виде слоя толщиной менее 1 мм, называемого фронтом пламени. Однако, как правило (если не считать детонационных режимов сгорания), эти процессы происходят недостаточно быстро для образования взрывной волны. Поэтому процесс сгорания большинства газовых горючих смесей и аэрозолей нельзя называть взрывом, а широкое распространение такого названия в технической литературе, по-видимому, связано с тем, что, если такие смеси воспламеняются внутри оборудования или помещений, то в результате значительного повышения давления происходит разрушение последних, которое по своей природе и по всем своим внешним проявлениям носит характер взрыва.

Поэтому, если не разделять процессы горения и собственно разрушения оболочек, а рассматривать всё явление в целом, то такое название аварийной ситуации в известной мере можно считать оправданным.

Поэтому, называя горючие газовые смеси и аэрозоли «взрывоопасными» и определяя некоторые показатели «взрывоопасности» веществ и материалов, следует помнить об известной условности этих терминов.

Итак, если в некотором сосуде воспламенилась горючая газовая смесь, но сосуд выдержал образовавшееся вследствие этого давление, то -- это не взрыв, а простое сгорание газов. С другой стороны, если сосуд разорвался, то -- это взрыв, и при этом не имеет значения быстро или очень медленно происходило в нём сгорание газа; более того, -- это взрыв, если в сосуде и вовсе не было горючей смеси, а он разорвался, например, вследствие превышения давления воздуха или даже без превышения расчетного давления, а вследствие потери прочности сосуда в результате коррозии его стенок.

Для того чтобы любое физическое явление можно было назвать взрывом, необходимо и достаточно, чтобы по окружающей среде распространялась ударная волна. А ударная волна может распространяться только со сверхзвуковой скоростью, иначе это не ударная, а акустическая волна, которая распространяется со скоростью звука. И никаких промежуточных явлений в сплошной среде в этом смысле не существует.

Другое дело -- детонация. Несмотря на общую химическую природу с дефлаграцией (реакция горения), она сама распространяется вследствие распространения ударной волны по горючей газообразной смеси и представляет собой комплекс ударной волны и волны химической реакции в ней.

В литературе часто встречается термин «взрывное горение», под которым понимают дефлаграцию со скоростью распространения турбулентного пламени порядка 100 м/с. Однако такое название лишено всякого физического смысла и ничем не оправданно. Горение газообразных смесей бывает дефлаграционным и детонационным, и никакого «взрывного горения» не бывает. Введение в практику этого понятия, очевидно, было вызвано желанием авторов особо выделить высокотурбулентное дефлаграционное горение, одним из важных поражающих факторов которого является скоростной напор газа, который сам по себе (без образования ударной волны) может и разрушить, и опрокинуть объект .

Известно, что при некоторых условиях дефлаграция может переходить в детонацию. Условия, способствующие такому переходу, -- это обычно наличие длинных вытянутых полостей, например, труб, галерей, горных выработок и проч., особенно если они содержат препятствия, служащие турбулизаторами газового потока. Если горение начинается как дефлаграция, а заканчивается как детонация, то кажется логичным предположить наличие некоторого промежуточного по своей физической природе переходного режима, который некоторые авторы и называют взрывным горением. Однако и это не так.

Переход дефлаграционного горения в длинной трубе в детонацию можно представить следующим образом. Вследствие турбулизации и соответствующего увеличения поверхности пламени скорость его распространения увеличивается, и оно толкает впереди себя горючий газ с большей скоростью, что в свою очередь ещё больше увеличивает турбулентность горючей смеси впереди фронта пламени. Процесс распространения пламени становится самоускоряющимся с усиливающимся поджатием горючей смеси.

Поджатие горючей смеси в виде волны давления и повышенной температуры (температура в акустической волне повышается по закону адиабаты Пуассона, а не по адиабате Гюгонио, как это происходит при ударном сжатии) распространяется вперед со скоростью звука. А всякое новое дополнительное возмущение со стороны ускоряющегося фронта турбулентного пламени распространяется по уже нагретому поджатием газу с большей скоростью (скорость звука в газе пропорциональна Т1/2, где Т -- абсолютная температура газа), и поэтому оно вскоре догоняет фронт предыдущего возмущения и суммируется с ним. А обогнать фронт предыдущего возмущения оно не может, так как местная скорость звука в холодном горючем газе, расположенном в невозмущённом газе, значительно ниже. Таким образом, на переднем фронте первого акустического возмущения происходит сложение всех последующих возмущений, амплитуда давления на фронте акустической волны увеличивается, а сам фронт из первоначально пологого становится все более крутым и в конечном итоге из акустического превращается в ударный. При дальнейшем росте амплитуды ударного фронта температура в нём по адиабате Гюгонио достигает температуры самовоспламенения горючей смеси, что и означает возникновение детонации. Детонация -- это ударная волна, в которой происходит самовоспламенение горючей смеси.

Рассматривая описанный механизм возникновения детонации, важно отметить, что его нельзя понимать как непрерывный переход от дефлаграции в результате постоянного ускорения фронта пламени: детонация возникает скачкообразно впереди дефлаграционного пламени, даже на существенном расстоянии от него, когда там создаются соответствующие критические условия. В дальнейшем детонационная волна, представляющая собой единый комплекс ударной волны и волны химической реакции, распространяется стационарно с постоянной скоростью по невозмущенному горючему газу, независимо от породившего её дефлаграционного пламени, которое при подходе к продуктам детонации вскоре вообще перестает существовать.

Таким образом, ударная волна, волна химической реакции и волна разрежения в продуктах сгорания движутся с одинаковой скоростью и вместе представляют собой единый комплекс, обусловливающий распределение давления в зоне детонации в виде острого короткого пика. Строго говоря, зона химической реакции отстоит на некотором расстоянии от фронта ударной волны, так как процесс самовоспламенения возникает не сразу же после ударного сжатия горючей смеси, а по истечении определённого периода индукции и имеет некоторую протяжённость, поскольку химическая реакция происходит хотя и быстро, но не мгновенно. Однако ни начало химической реакции, ни её конец на экспериментальной кривой пика давления никаких характерных изломов не определяют. При экспериментах датчики давления фиксируют детонацию в виде очень острых пиков, причем часто инерционность датчиков и их линейные размеры не позволяют проводить достоверных измерений не только профиля волны, но даже и её амплитуды. Для грубых оценок амплитуды давления в детонационной волне можно считать, что оно в 2-3 раза превышает максимальное давление взрыва данной горючей смеси в замкнутом сосуде. Если детонационная волна подходит к закрытому торцу трубы, то происходит её отражение, в результате которого давление ещё увеличивается. Этим и объясняется большая разрушительная сила детонации. Воздействие детонационной волны на препятствие очень специфично: оно носит характер жесткого удара.

По аналогии с конденсированными взрывчатыми веществами, которые принято делить на метательные (порохб) и бризантные, можно отметить, что детонация в этом смысле оказывает, условно говоря, бризантное действие на препятствие, а дефлаграция -- метательное.

Возвращаясь к вопросу о возможности и условиях перехода дефлаграции в детонацию, следует отметить, что для этого необходимы не только турбулизаторы газового потока, но существуют также и концентрационные пределы возможности детонации, которые существенно эже концентрационных пределов дефлаграционного распространения пламени. А что касается возможности детонации газового облака в открытом пространстве, то на это способны далеко не все горючие газообразные смеси: известны экспериментальные исследования, показавшие, например, что, когда в центре метановоздушного облака стехиометрического состава инициировали детонацию, то есть взрывали небольшую навеску конденсированного взрывчатого вещества, то начавшаяся детонация облака затухала и переходила в дефлаграцию. Поэтому, когда есть необходимость заставить газообразное облако сдетонировать в открытом пространстве (так называемая вакуумная бомба), то, во-первых, следует выбрать вещество, способное детонировать в смеси с воздухом в открытом пространстве, например, окись этилена, а во-вторых, не просто поджечь его, а изначально взорвать хотя бы небольшую навеску конденсированного взрывчатого (детонирующего) вещества.

Взрыв - весьма быстрый переход потенциальной энергии в механическую работу.

Взрывы: Электрический, Кинетический, Физический(взрыв баллонов) ,Атомный(выделение большого кол-ва тепла за счет цепной реакции), Химический взрыв(за счет помещенной внутрь энергии, которая преврщется в энергию сильносжатых газов за счет хим. реакций)

Энергия - способность тела совершать работу. Работа – Величина, измеряющая количество энергии превращения из одной формы в другую. Мощность – работа, проделанная за единицу времени.

Взрывчатые материалы – представляют собой относительно неустойчивую термодинамическими свойствами систему, способную, под влиянием внешних воздействий, производить протекание изотермических превращений с образованием большого количества разогретых материалов.

Возможность химического взрыва определяется четырьмя условиями:

1) большой скоростью химического превращения;

2) экзотермичностью его;

3) наличием газов или паров в продуктах взрыва;

4) способностью реакции к самораспространению. Скорость химического превращения. Для небольших зарядов.

3. Классификация взрывчатых процессов

классификация взрывчатых процессов: а) Медленное химическое разложение;

б) взрыв (физический или/и химический быстропротекающий процесс с выделением значительной энергии в небольшом объёме за короткий промежуток времени, приводящий к ударным, вибрационным и тепловым воздействиям на окружающую среду и высокоскоростному расширению газов.)

в) детонация (режим горения, в котором по веществу распространяется ударная волна, инициирующая химические реакции горения, в свою очередь, поддерживающие движение ударной волны за счёт выделяющегося в экзотермических реакциях тепла.).

г) горение(сложный физико-химический процесс превращения исходных веществ в продукты сгорания в ходе экзотермических реакций, сопровождающийся интенсивным выделением тепла)

Процесс протекает со скоростью звука в этом веществе- до 1000 м/с, в то время, как взрыв и детонация больше скорости звука

Медленное термическое превращение, горение и детонация - связаны между собою как по сущности происходящих при них процессов, так и генетически. Медленное химическое превращение может в определенных условиях приводить к возникновению горения, горение может переходить в детонацию; возможен также и переход детонации в горение.

4.Классификация вм.

Все взрывчатые вещества, применяемые или применявшиеся в практике, разделяются на три группы:

I группа -метательные BB, или пороха;

II группа - бризантные, или дробящие взрывчатые вещества;

III группа - инициирующие взрывчатые вещества.

I группа. Метательные BB, или пороха. К этой группе относятся вещества, характеризующиеся быстрым горением и пригодные для сообщения пуле или снаряду движения в канале ствола оружия или орудия. Со времени второй мировой войны пороха широко применяются для сообщения движения реактивным снарядам.

Метательные BB, или пороха, делятся на следующие классы:

1-й класс. Механические смеси. К механическим смесям относятся дымный, или черный порох и различные смеси типа черного пороха, например, смеси с натриевой селитрой.

В настоящее время дымный порох не применяется для стрельбы в артиллерии. Он применяется в военном деле для изготовления воспламенителей пороховых зарядов, в качестве вышиб-ного заряда шрапнелей, для запрессовки в дистанционные кольца, для изготовления огнепроводного шнура и других целен. Пороха на натриевой селитре в военном деле не применяются вследствие их физической нестойкости (сильной гигроскопичности). К классу смесей относятся также так называемые селтроугольные добавки, т. е. смеси аммиачной селитры с углем, служившие во время первой мировой войны для частичной замены бездымного пороха в пороховых зарядах. 2-й класс. Коллоидные, или бездымные пороха.

Бездымные

1 Изложенная здесь классификация обнимает лишь практически применяемые взрывчатые вещества. Поэтому в нее не входят такие взрывчатые вещества, как газообразные взрывчатые смеси, сверхчувствительные взрывчатые вещества и т. д.

2 Для большинства порохов этого класса название «бездымные», строго говоря, применяется неправильно: это - малодымные пороха. Вначале это название оправдывалось сравнением коллоидного пороха с черным; при современной технике даже небольшая дымность большинства коллоидных порохов нежелательна, так как демаскирует расположение орудий, и ее стремятся устранить.

В зависимости от природы растворителя коллоидные пороха делятся на две категории:

1. Пироксилиновые пороха, изготовляемые с участием летучего растворителя, в значительной мере удаляемого из пороха б последующих фазах его производства.

2. Пороха на труднолетучем или нелетучем растворителе, полностью остающемся в порохе.

II группа. Бризантные, или дробящие взрывчатые вещества. Для веществ этой группы преимущественным видом взрывчатого превращения является детонация; они применяются для снаряжения разрывных снарядов (предназначенных для разрушения целей или уничтожения осколками живой силы противника) и для подрывных или взрывных работ.

Бризантные BB делятся на следующие классы:

1-й класс. Азотнокислые эфиры углеводов или спиртов и взрывчатые вещества, приготовленные на их основе. (пироксилин, нитроглицерин, нитрогликоль, тетранитропентаэритрит, или тэн)

2-й класс. Нитросоединения. Они представляют собой важнейший класс бризантных BB и применяются для снаряжения артиллерийских снарядов, авиабомб, противотанковых и противопехотных мин, ручных гранат и других боеприпасов.

3-й класс. Взрывчатые смеси. Взрывчатые смеси относятся к так называемым суррогатным взрывчатым веществам. Сюда относятся аммиачноселитренные взрывчатые вещества, хлоратные и перхлоратные взрывчатые вещества (хлоратиты и перхлоратиты), оксиликвиты и другие смеси с жидкими окислителями.

Аммиачноселитренные взрывчатые вещества представляют собой важнейшую категорию класса взрывчатых смесей. (Аммотол, Шнейдерит, Маисит)

Только применение этих взрывчатых веществ позволило разрешить во время двух мировых войн задачу обеспечения армий взрывчатыми веществами в огромных количествах и по пониженной стоимости сравнительно с чистыми нитросоединениями.

III группа . Инициирующие взрывчатые вещества. Инициирующие BB характеризуются тем, что они либо взрываются от простых видов внешнего воздействия - луча пламени, накола, трения, причем способны вызвать взрыв (детонацию) бризантных взрывчатых веществ.

Характерным отличием инициирующих BB, применяемых для детонирования бризантных BB, является короткий период нарастания скорости детонации.

Бризантные взрывчатые вещества иногда называют вторичными в отличие от первичных - инициирующих взрывчатых веществ. Это отличие заключается в том, что вторичные BB в условиях их применения не могут быть надежно взорваны простым внешним воздействием (лучом пламени, наколом, трением и т. п.) -

Важнейшими представителями инициирующих веществ являются следующие:

1) гремучая ртуть и ртутная соль гремучей кислоты;

2) азид свинца PbN0 - свинцовая соль азотистоводородной кислоты HN,.;

3) тринитрорезорцпнат свинца

Понятие о взрыве и взрывчатых веществах

Взрывчатыми веществами (ВВ) называются вещества, способные под влиянием внешнего воздействия к чрезвычайно быстрому химическому превращению с выделением тепла и образованием сильно нагретых газов. Процесс такого химического превращения взрывчатого вещества называется взрывом.

Для взрыва характерны три основных фактора, которые определяют действие, производимое взрывом:

Очень большая скорость превращения взрывчатого вещества, измеряемая промежутком времени от сотых до миллионных долей секунды;

Высокая температура, достигающая 3–4,5 тыс. градусов;

Образование большого количества газообразных продуктов, которые, сильно нагреваясь и быстро расширяясь, превращают выделяющуюся при взрыве тепловую энергию в механическую работу, производя разрушения или разбрасывание окружающих заряд предметов.

Совокупностью указанных факторов и объясняется огромная, по сравнению с другими источниками энергии, кроме атомной, мощность взрывчатых веществ. При отсутствии хотя бы одного из перечисленных факторов взрыва не будет.

Для возбуждения взрыва необходимо воздействовать на взрывчатое вещество извне, сообщить ему некоторую порцию энергии, величина которой зависит от свойств взрывчатого вещества. Взрыв могут вызвать различные виды внешнего воздействия: механический удар, накол, трение, нагревание (пламенем, накаленным телом, искрой), электрическое накаливание или искровой разряд, химическая реакция и, наконец, взрыв другого взрывчатого вещества (капсюлем-детонатором, детонацией на расстоянии).

Основные формы взрывчатого превращения.

Взрывчатое превращение веществ характеризуется тремя показателями: экзотермичностью процесса (выделением тепла); скоростью распространения процесса (кратковременность) и образованием газообразных продуктов.

Экзотермичность процесса взрыва является первым необходимым условием, без которого невозможно возникновение и проявление взрыва. За счет тепловой энергии реакции происходит разогрев газообразных продуктов до температуры в несколько тысяч градусов, их сильное сжатие в объеме взрывчатого вещества и последующее активное расширение.

Образование большого количества газообразных и парообразных продуктов реакции обеспечивает создание в локальном объеме высокого давления и обусловленного им разрушительного эффекта. Вследствие нагревания до высокой температуры (3500 – 4000К) продукты взрыва оказываются в чрезвычайно сжатом состоянии (давление при взрыве достигает (20…40)*103 МПа) и способны разрушить очень прочные преграды. В процессе расширения продуктов взрыва осуществляется быстрый переход потенциальной химической энергии ВВ в механическую работу или в кинетическую энергию движущихся частиц



Быстрым сгоранием взрывчатого вещества обычно называют процесс, скорость распространения которого по массе ВВ не превышает нескольких метров в секунду, а иногда - даже долей метра в секунду. Характер действия в этом случае - более или менее быстрое нарастание давления газов и производство ими работы разбрасывания или метания окружающих тел. Если процесс быстрого сгорания происходит на открытом воздухе, то он не сопровождается сколько-нибудь значительным эффектом

Классификация ВВ.

Все ВВ, применяемые при производстве подрывных работ и снаряжении различных боеприпасов делятся на три основные группы:

· инициирующие;

· бризантные;

· метательные (пороха).

ИНИЦИИРУЮЩИЕ - особо восприимчивые к внешним воздействиям (удару, трению, воздействию огня). К ним относятся:

· гремучая ртуть (фульминат ртути);

· азид свинца (азотистоводороднокислый свинец);

· тенерес (тринитрорезорцинат свинца, ТНРС);

БРИЗАНТНЫЕ (дробящие) - способные к устойчивой детонации. Они более мощны и менее чувствительны к внешним воздействиям и в свою очередь подразделяются на:

ВВ ПОВЫШЕННОЙ МОЩНОСТИ , к которым относятся:

· тэн (тетранитропентраэритрит, пентрит);

· гексоген (триметилентринитроамин);

· тетрил (тринитрофенилметилнитроамин).

ВВ НОРМАЛЬНОЙ МОЩНОСТИ :

· тротил (тринитротолуол, тол, ТНТ);

· пикриновая кислота (тринитрофенол, мелинит);

· ПВВ-4 (пластит-4);

ВВ ПОНИЖЕННОЙ МОЩНОСТИ (амиачноселитренные ВВ):

· аммониты;

· динамоны;

· аммоналы.

МЕТАТЕЛЬНЫЕ (пороха) - ВВ, основной формой взрывчатого превращения которых является горение. К ним относятся: - дымный порох; - бездымные пороха.



Пиротехнический состав - это смесь компонентов, обладающая способностью к самостоятельному горению или горению с участием окружающей среды, генерирующая в процессе горения газообразные и конденсированные продукты, тепловую, световую и механическую энергию и создающая различные оптические, электрические, барические и иные специальные эффекты

Классификация ПС. Требования к ПС.

КЛАССИФИКАЦИЯ

Пиротехническими составами снаряжают следующие виды средств военного назначения:

1) осветительные средства (авиабомбы, артиллерийские снаряды, авиационные факелы и др.), используемые для освещения местности в ночных условиях;

2) фотоосветительные средства (фотобомбы, фотопатроны), используемые при ночной аэрофотосъемке: и для других целей;

3) трассирующие средства, делающие видимой траекторию полета пуль и снарядов (и других подвижных объектов) и тем самым облегчающие пристрелку по быстро движущимся целям;

4) средства инфракрасного излучения, используемые для слежения за полетом ракет и в качестве ложных целей;

5) ночные сигнальные средства (патроны и др.), применяемые для подачи сигналов;

6) дневные сигнальные средства (патроны и др.), используемые для той же цели, но в дневных условиях;

7) зажигательные средства (бомбы, снаряды, пули и многие Др.), служащие для уничтожения военных объектов противника;

8) маскирующие средства (дымовые шашки, снаряды и др.), употребляемые для получения дымовых завес;

9) ракеты различного назначения и дальности полета, использующие твердое пиротехническое топливо;

10) учебно-имитационные средства, употребляемые как на маневрах и ученьях, так и в боевой обстановке. Они имитируют действие атомных бомб, фугасных снарядов и бомб, а также различные явления на поле боя: орудийные выстрелы, пожары и др., и могут этим дезориентировать службу наблюдения противника;

11) целеуказательные средства (снаряды, бомбы и др.), указывающие местонахождение объектов противника;

12) пиротехнические газогенераторы, используемые для различных целей. Пиротехнические составы используются также и в различных областях народного хозяйства

К пиротехническим составам военного назначения можно отнести следующие:

1) осветительные;

2) фотоосветительные (фотосмеси);

3) трассирующие;

4) инфракрасного излучения;

5) зажигательные;

6) ночных сигнальных огней;

7) цветных сигнальных дымов;

8) маскирующих дымов;

9) твердое пиротехническое топливо;

10) безпазовые (для замедлителей);

11) газогенерирующие;

12) воспламенительные, содержащиеся в небольшом количестве во всех пиротехнических средствах;

13) прочие: имитационные, свистящие и др. Многие составы применяются в самых различных видах средств; так, например, осветительные составы часто используют в трассирующих средствах; составы маскирующих дымов могут быть использованы и в учебно-имитационных средствах и т. д.

Пиротехнические составы можно также классифицировать по характеру процессов, протекающих три их горении.

Пламенные составы

1. Белопламенные.

2. Цветнолламенные.

3. Составы инфракрасного излучения.

Тепловые составы

1. Термитно-зажигательные.

2. Безгазовые (малогазовые).

Дымовые составы

1. Белого и черного дыма.

2. Цветного дыма.

Вещества и смеси, сгорающие за счет кислорода воздуха

1. Металлы и сплавы металлов.

2. Фосфор, его растворы и сплавы.

3. Смеси нефтепродуктов.

4. Различные вещества и смеси, загорающиеся при соприкосновении с водой или воздухом.

ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К ПИРОТЕХНИЧЕСКИМ СРЕДСТВАМ И СОСТАВАМ

Основное требование - это получение при действии пиротехнического средства максимального специального эффекта. Для различных средств специальный эффект обуславливается различными факторами. Этот вопрос подробно разбирается при описании свойств отдельных категорий составов и средств. Здесь же приводится только несколько примеров.

Для трассирующих средств, специальный эффект определяется хорошей видимостью полета пули или снаряда. Видимость, в свою очередь, определяется силой света пламени и зависит также от цвета пламени.

Для зажигательных средств хороший специальный эффект обуславливается (при наличии подходящей конструкции боеприпасов) созданием достаточно большого очага пожара, высокой температурой пламени, достаточным временем горения состава, а также количеством и свойствами шлаков, получающихся при горении.

Для маскирующих дымовых средств, специальный эффект определяется созданием возможно большей, густой и устойчивой дымовой завесы.

Пиротехнические средства не должны представлять опасности при обращении с ними и хранении. Получаемый при их действии эффект не должен ухудшаться после длительного хранения.

Материалы, используемые для изготовления пиротехнических средств, должны быть по возможности недефицитны. Технологический процесс изготовления должен быть простым, безопасным и допускающим механизацию и автоматизацию производства.

Пиротехнические составы должны обладать следующими качествами: 6

1) давать максимальный специальный эффект при минимальном расходовании состава;

2) иметь по возможности большую плотность (и в порошкообразном, и в прессованном виде);

3) сгорать равномерно с определенной скоростью;

4) обладать химической и физической стойкостью при длительном хранении;

5) иметь возможно меньшую чувствительность к механическим импульсам;

6) не быть чрезмерно чувствительными к тепловым воздействиям (не воспламеняться при небольшом подъеме температуры, при попадании искры и т. п.);

7) иметь минимальные взрывчатые свойства; редкие случаи, когда наличие взрывчатых свойств необходимо, будут оговорены ниже;

8) иметь несложный технологический процесс изготовления;

ИВВ. Общая характеристика

Инициирующие ВВ - это такие взрывчатые вещества, которые характеризуются чрезвычайно высокой чувствительностью к простым видам начального импульса и способностью детонировать в весьма малых количествах.

Когда скорость детонации ИВВ достигает максимального значения, скорость детонации БВВ значительно меньше скорости детонации ИВВ. Позднее, когда скорость детонации БВВ достигает максимальной величины, соотношение энергии изменяется в пользу БВВ, так как скорость детонации БВВ выше, чем у ИВВ. Ускорение взрывчатого превращения зависит от природы ИВВ, величины начального импульса, плотности заряда и плотности его оболочки.

Поэтому ИВВ применяются для инициирования (возбуждения) процессов взрыва разрывных зарядов или горения метательных и ракетных зарядов. В соответствии с этим назначением ИВВ часто называют первичными.

Все ИВВ делятся на индивидуальные и смесевые инициирующие смеси. Индивидуальные ИВВ представлены различными классами неорганических соединений. Из всего многообразия классов лишь немногие получили широкое применение в качестве ИВВ. К ним относятся фульминаты (соли гремучей кислоты), азиды (соли азотистоводородной кислоты), стифнаты или тринитрорезорцинаты (соли стифниновой кислоты или тринитрорезорцина), производственные тетразена.

Получение

Гремучую ртуть получают взаимодействием нитрата ртути с этанолом в разбавленной азотной кислоте. Реакция протекает по схеме:

Свойства

Белый или серый кристаллический порошок, нерастворим в воде. Имеет сладкий металлический вкус, ядовит. Насыпная плотность 1,22-1,25 г/см³. Теплота разложения 1,8 МДж/кг. Температура вспышки - 180 °C. Нижний предел чувствительности при падении груза 700 г - 5,5 см, верхний - 8,5 см. Гравиметрическая плотность 4,39 г/см³. Легко взрывается при ударе, действии пламени, раскалённого тела и т. п. При осторожном нагревании гремучая ртуть медленно разлагается. При 130-150 °C самовоспламеняется со взрывом. Влажная гремучая ртуть гораздо менее взрывоопасна. Влажность гремучей ртути, запрессованной в капсюль-детонатор, должна быть не более 0,03 %. Гремучая ртуть хорошо растворима в водных растворах аммиака или цианистого калия. Концентрированная серная кислота вызывает взрыв одной каплей. Температура взрыва гремучей ртути равна 4810 °C, объём газов 315 л/кг, скорость детонации 5400 м/сек.

Гремучую ртуть получают при действии азотнокислой ртути и азотной кислоты на этиловый спирт. Применяют в капсюлях-детонаторах и капсюлях-воспламенителях. В последнее время гремучая ртуть вытесняется более эффективными инициирующими взрывчатыми веществами - азидом свинца и др.

Свойства азид свинца

· Теплота взрыва: около 1,536 МДж/кг (7,572 МДж/дм³).

· Объем газов: 308 л/кг (1518 л/дм³)

· Скорость детонации: около 4800 м/сек.

Получение

Синтез азида свинца осуществляется в ходе обменной реакции между растворами солей свинца и растворимыми азидами щелочных металлов. Азид свинца в результате выпадает в виде белого кристаллического осадка:

Получение

Получают нейтрализацией горячего водного раствора стифниновой кислоты гидрокарбонатом натрия и последующим взаимодействием образовавшегося стифната натрия с соответствующими растворимыми солями свинца (напр. ацетатом, нитратом или хлоридом) при температуре около 70 °C.

· С 6 H(OH) 2 (NO 2) 3 + NaHCO 3 → C 6 H(NO 2) 3 (ONa) 2 + CO 2 + H 2 O

· C 6 H(NO 2) 3 (ONa) 2 + PbCl 2 → C 6 H(NO 2) 3 (O) 2 Pb + NaCl

· Тетразе́н - химическое соединение C 2 H 6 N 10 ·H 2 O. Моногидрат 5-(4-амидино-1-тетразено)тетразола .

· Желтоватые клиновидные кристаллы. В насыпном виде представляет собой рыхлую кристаллическую массу с насыпной плотностью 0,45 г/см³. Почти не растворим в воде (0,02 г на 100 г воды при 22 °C) и в органических растворителях. Обладает сильными взрывчатыми свойствами.

· Инициирующее взрывчатое вещество, используемое в капсюлях накольного действия как сенсибилизатор (увеличитель чувствительности) к азиду свинца или тринитрорезорцинату свинца.

Свойства

· Плотность кристаллов 1,685 г/см³

· Теплота взрыва 2305 кДж/кг

· Температура вспышки 140 °C

· Объем газообразных продуктов взрыва 400-450 л/кг

Получение

Получают тетразен взаимодействием водных растворов нитрата или карбоната аминогуанидина NH 2 NHC(=NH)NH 2 с нитритом натрия NaNO 2 .

БВВ. Классификация

Бризантные ВВ менее чувствительны к внешним воздействиям, но обладают большей мощностью, чем инициирующие ВВ. Они служат для получения разрушительного действия взрыва. Бризантные ВВ применяются в чистом виде, а также в виде смесей друг с другом для производства подрывных работ, снаряжения авиационных, артиллерийских и инженерных боеприпасов.

Бризантные ВВ подразделяются на:

· ВВ повышенной мощности (гексоген, ТЭН, сплавы тротила с гексогеном, октоген, тетрил);

· ВВ нормальной мощности (тротил, сплавы тротила с ксилитом, динамиты, пироксилин, пластические и эластичные ВВ);

· ВВ пониженной мощности (аммиачная селитра, смеси аммиачной селитры с горючими или взрывчатыми веществами).

Для сравнительной оценки взрывчатых свойств различных ВВ может быть использован тротиловый эквивалент, численно равный отношению теплоты взрывчатого превращения сравниваемого ВВ с аналогичной характеристикой тротила. Наиболее мощным ВВявляется октоген, тротиловый эквивалент которого равен 1,8.

Физические свойства

· Плотность: 1773 кг/м³

· Температура плавления 140 °C, с разложением

· Температура вспышки 215 °C,

· Растворим в ацетоне, нерастворим в воде.

Взрывчатые свойства

· Более чувствителен к удару, чем гексоген,

· Скорость детонации 8350 м/сек.

· Теплота разложения 5756 кДж/кг

· Бризантность

· по Гессу 24 мм

· по Касту 3,5 мм

· Фугасность 500 мл

· (Удельный) объём газообразных продуктов взрыва 790 л/кг

· Критический диаметр 1,5 мм

· тэн относительно стоек в химическом отношении

· Стабильность при хранении выше, чем у гексогена

· При температуре 215 °C взрывается.

· Тротиловый эквивалент (RE) - 1.66

Все величины сильно зависят от условий эксперимента: плотности заряда, материала оболочки, дисперсности взрывчатого вещества, наличия флегматизаторов и т. п.

Получение

Получают путём взаимодействия четырёхатомного спирта пентаэритрита с концентрированными азотной и серной кислотами.

ТЕТРИЛ.

ТРОТИЛ

Физические свойства

· Плотность: от 1500 кг/м³ до 1663 кг/м³

· Температура плавления 80,85 °C

· Температура кипения 295 °C

· Температура вспышки 290 °C

· Теплота взрыва - от 4103 кДж/кг до 4605 кДж/кг (в среднем 4184 кДж/кг)

· Скорость детонации при плотности 1,64 - 6950 м/с

· Бризантность по Гессу - 16 мм

· Бризантность по Касту - 3,9 мм

· Фугасность - 285 мл

· Объем газообразных продуктов взрыва - 730 л/кг

· Имеет невысокую чувствительность к удару (4-8 % взрывов при падении груза 10 кг с высоты 25 см) .

· Срок хранения около 25 лет, после чего тротил становится более чувствительным к детонации.

Получение[править | править вики-текст]

Первый этап: нитрование толуола смесью азотной и серной кислот до моно- и динитротолуолов. Серная кислота используется как водоотнимающий агент.

Второй этап: смесь моно- и динитротолуола нитруют в смеси азотной кислоты и олеума. Олеум используется как водоотнимающий агент.

Излишек кислоты от второго этапа можно использовать для первого

Физические свойства

Гексоген - белый кристаллический порошок. Без запаха, вкуса, сильный яд. Удельный вес - 1,816 г/см³, молярная масса - 222,12 г/моль. Нерастворим в воде, плохо растворим в спирте, эфире, бензоле, толуоле, хлороформе, лучше - в ацетоне, ДМФА, концентрированной азотной и уксусной кислотах. Разлагается серной кислотой, едкими щелочами, а также при нагревании.

Плавится гексоген при температуре 204,1 °C с разложением, при этом его чувствительность к механическим воздействиям сильно повышается, поэтому его не плавят, а прессуют. Прессуется плохо, поэтому, чтобы его лучше спрессовать, гексоген флегматизируют в ацетоне.

Получение

Метод Герца (1920) заключается в непосредственном нитровании гексаметилентетрамина (уротропина, (CH 2) 6 N 4) концентрированной азотной кислотой (HNO 3):

{\displaystyle \mathrm {(CH_{2})_{6}N_{4}+3HNO_{3}\longrightarrow \ (CH_{2})_{3}N_{3}(NO_{2})_{3}+3HCOH+NH_{3}} }

Производство гексогена по этому методу велось в Германии, Англии и других странах на установках непрерывного действия. Метод имеет ряд недостатков, главные из которых:

· малый выход гексогена по отношению к сырью (35-40 %);

· большой расход азотной кислоты.

Октоген (1,3,5,7-тетранитро-1,3,5,7-тетраазациклооктан, циклотетраметилентетранитрамин, HMX) - (CH 2) 4 N 4 (NO 2) 4 , термостойкое бризантное взрывчатое вещество. Впервые был получен как побочный продукт процесса получения гексогена конденсацией нитрата аммония с параформом в присутствии уксусного ангидрида. Представляет собой белый порошок кристаллического характера. Ядовит.

Физические свойства

· Плотность: 1960 кг/м³

· Температура плавления 278,5-280 °С (с разложением)

· Температура вспышки 290°С

Взрывчатые свойства

· Обладает высокой чувствительностью к удару.

· Скорость детонации 9100 м/с при плотности 1,84 г/см³.

· Объём газообразных продуктов взрыва 782 л/кг.

· Теплота взрыва 5,7 МДж/кг.

· Фугасность 480 мл

· Тротиловый эквивалент 1,7

Получение

Получают действием концентрированной азотной кислоты на уротропин в растворе уксусной кислоты, уксусного ангидрида и нитрата аммония в растворе азотной кислоты.

Пороха. Основные виды.

По́рох - многокомпонентная твёрдая взрывчатая смесь, способная к закономерному горению параллельными слоями без доступа кислорода извне с выделением большого количества тепловой энергии и газообразных продуктов, используемых для метания снарядов, движения ракет и в других целях . Его относят к классу метательных взрывчатых веществ. И ещё порох находится в пуле.

Виды порохов

Различают два вида пороха: смесевые (в том числе самый распространенный - дымный , или черный порох ) и нитроцеллюлозные (т. н. бездымные). Порох, применяемый в ракетных двигателях, называют твёрдым ракетным топливом. Основу нитроцеллюлозных порохов составляют нитроцеллюлоза и пластификатор. Помимо основных компонентов, эти пороха содержат различные добавки.

Порох является взрывчатым веществом метательного действия. При соответствующем условии инициирования пороха способны к детонации аналогично бризантным взрывчатым веществам, благодаря чему дымный порох долгое время применяли в качестве бризантного взрывчатого вещества. При длительном хранении больше установленного для данного пороха срока или при хранении в ненадлежащих условиях происходит химическое разложение компонентов пороха и изменение его эксплуатационных характеристик (режима горения, механических характеристик ракетных шашек и др.). Эксплуатация и даже хранение таких порохов крайне опасны и могут привести к взрыву.

Современные дымные , или чёрные пороха производятся по строгим нормативам и точной технологии. Все марки чёрного пороха делятся на зернистые и пороховую пудру (т. н. пороховая мякоть , ПМ). Основными компонентами дымного пороха являются калия нитрат, сера и древесный уголь; нитрат калия является окислителем (способствует быстрому горению), древесный уголь горючим (окисляемым окислителем), а сера - добавочным компонентом (так же, как и уголь, являясь топливом в реакции, она из-за невысокой температуры воспламенения улучшает поджигаемость). Во многих странах пропорции, установленные нормативами, несколько отличаются (но не сильно).

Зернистые пороха изготовляются в виде зёрен неправильной формы в пять стадий (не считая сушки и дозирования): помол компонентов в пудру, их смешение, прессование в диски, дробление на гранулы и полировка.

Эффективность горения дымного пороха во многом связана с тонкостью измельчения компонентов, полнотой смешения и формой зёрен в готовом виде.

Сорта дымных порохов (% состав KNO 3 , S, C.):

· шнуровой (для огнепроводных шнуров)(77 %, 12 %, 11 %);

· ружейный (для воспламенителей к зарядам из нитроцеллюлозных порохов и смесевых твёрдых топлив, а также для вышибных зарядов в зажигательных и осветительных снарядах);

· крупнозернистый (для воспламенителей);

· медленногорящий (для усилителей и замедлителей в трубках и взрывателях);

· минный (для взрывных работ) (75 %, 10 %, 15 %);

· охотничий (76 %, 9 %, 15 %);

· спортивный.

Дымный порох легко воспламеняется под действием пламени и искры (температура вспышки 300 °C), поэтому в обращении опасен. Хранится в герметической упаковке отдельно от других видов пороха. Гигроскопичен, при содержании влаги более 2 % плохо воспламеняется. Процесс производства дымных порохов предусматривает смешение тонкоизмельчённых компонентов и обработку полученной пороховой мякоти до получения зёрен заданных размеров. Коррозия стволов при использовании дымного пороха намного сильнее, чем от нитроцеллюлозных порохов, поскольку побочным продуктом сгорания является серная и сернистая кислоты. В настоящее время дымный порох используется в фейерверках. Примерно до конца XIX века применялся в огнестрельном оружии и взрывных боеприпасах.

Нитроцеллюлозные пороха

Порох был первым известным «топливом» для огнестрельного оружия и ракет. В отличие от долгое время использовавшегося дымного (чёрного) пороха на основе угля, сегодня получили широкое распространение нитроцеллюлозные пороха, так называемый бездымный порох; главным преимуществом этого вида пороха является бо́льший КПД и отсутствие дыма, мешающего обзору после выстрела.

По составу и типу пластификатора (растворителя) нитроцеллюлозные пороха делятся на: пироксилиновые, баллиститные и кордитные. Они применяются для изготовления современных взрывчатых веществ, порохов, пиротехнических изделий и для подрыва (инициирования) других взрывчатых веществ, то есть в качестве детонаторов. Таким образом, в современных образцах вооружения в качестве топлива в основном используют бездымный порох (порошок нитроцеллюлозы, NC).

ДРП, свойства и получение.

Выстрел унитарного заряда

Свойства порохов.

Литье: виды,применение

Литьё - заполнение чего-либо (формы, ёмкости, полости) материалом, находящимся в жидком агрегатном состоянии.

Известно множество разновидностей литья:

· в песчаные формы (ручная или машинная формовка);

· в многократные (цементные, графитовые, асбестовые формы);

· в оболочковые формы;

· по выплавляемым моделям;

· по замораживаемым ртутным моделям;

· центробежное литье;

· в кокиль ;

· литьё под давлением;

· по газифицируемым (выжигаемым) моделям;

· вакуумное литьё;

· электрошлаковое литьё;

· литьё с утеплением.

Так как разновидности литья различаются одновременно по многим разнородным признакам, то возможны и комбинированные варианты, например, электрошлаковое литьё в кокиль.

Литьё в песчаные формы

Литьё в песчаные формы - дешёвый, самый грубый, но самый массовый (до 75-80 % по массе получаемых в мире отливок) вид литья. Вначале изготовляется литейная модель (ранее - деревянная, в настоящее время часто используются пластиковые модели, полученные методами быстрого прототипирования ), копирующая будущую деталь. Модель засыпается песком илиформовочной смесью (обычно песок и связующее), заполняющей пространство между ею и двумя открытыми ящиками (опоками). Отверстия в детали образуются с помощью размещённых в форме литейных песчаных стержней, копирующих форму будущего отверстия. Насыпанная в опоки смесь уплотняется встряхиванием, прессованием или же затвердевает в термическом шкафу (сушильной печи). Образовавшиеся полости заливаются расплавом металла через специальные отверстия - литники. После остывания форму разбивают и извлекают отливку. После чего отделяютлитниковую систему (обычно это обрубка), удаляютоблой и проводяттермообработку .

Новым направлением технологии литья в песчаные формы является применение вакуумируемых форм из сухого песка без связующего. Для получения отливки данным методом могут применяться различные формовочные материалы, например песчано-глинистая смесь или песок в смеси со смолой и т. д. Для формирования формы используют опоку (металлический короб без дна и крышки). Опока имеет две полуформы, то есть состоит из двух коробов. Плоскость соприкосновения двух полуформ - поверхность разъёма. В полуформу засыпают формовочную смесь и утрамбовывают её. На поверхности разъёма делают отпечаток промодели (промодель соответствует форме отливки). Также выполняют вторую полуформу. Соединяют две полуформы по поверхности разъёма и производят заливку металла.

Литьё в кокиль

Литьё металлов в кокиль - более качественный способ. Изготавливается кокиль - разборная форма (чаще всего металлическая), в которую производится литьё. После застывания и охлаждения, кокиль раскрывается и из него извлекается изделие. Затем кокиль можно повторно использовать для отливки такой же детали. В отличие от других способов литья в металлические формы (литьё под давлением, центробежное литьё и др.), при литье в кокиль заполнение формы жидким сплавом и его затвердевание происходят без какого-либо внешнего воздействия на жидкий металл, а лишь под действиемсилы тяжести .

Основные операции и процессы: очистка кокиля от старой облицовки, прогрев его до 200-300°С, покрытие рабочей полости новым слоем облицовки, простановка стержней, закрывание частей кокиля, заливка металла, охлаждение и удаление полученной отливки. Процесс кристаллизации сплава при литье в кокиль ускоряется, что способствует получению отливок с плотным и мелкозернистым строением, а следовательно, с хорошей герметичностью и высокими физико-механическими свойствами. Однако отливки из чугуна из-за образующихся на поверхности карбидов требуют последующегоотжига . При многократном использовании кокиль коробится и размеры отливок в направлениях, перпендикулярных плоскости разъёма, увеличиваются.

В кокилях получают отливки из чугуна, стали, алюминиевых, магниевых и др. сплавов. Особенно эффективно применение кокильного литья при изготовлении отливок из алюминиевых и магниевых сплавов. Эти сплавы имеют относительно невысокую температуру плавления, поэтому один кокиль можно использовать до 10000 раз (с простановкой металлических стержней). До 45 % всех отливок из этих сплавов получают в кокилях. При литье в кокиль расширяется диапазон скоростей охлаждения сплавов и образования различных структур. Сталь имеет относительно высокую температуру плавления, стойкость кокилей при получении стальных отливок резко снижается, большинство поверхностей образуют стержни, поэтому метод кокильного литья для стали находит меньшее применение, чем для цветных сплавов. Данный метод широко применяется при серийном и крупносерийном производстве.

Литьё под давлением

ЛПД занимает одно из ведущих мест в литейном производстве. Производство отливок из алюминиевых сплавов в различных странах составляет 30-50 % общего выпуска (по массе) продукции ЛПД. Следующую по количеству и разнообразию номенклатуры группу отливок представляют отливки из цинковых сплавов. Магниевые сплавы для литья под давлением применяют реже, что объясняется их склонностью к образованию горячих трещин и более сложными технологическими условиями изготовления отливок. Получение отливок из медных сплавов ограничено низкой стойкостью пресс-форм.

Номенклатура выпускаемых отечественной промышленностью отливок очень разнообразна. Этим способом изготавливают литые заготовки самой различной конфигурации массой от нескольких граммов до нескольких десятков килограммов. Выделяются следующие положительные стороны процесса ЛПД:

· Высокая производительность и автоматизация производства, наряду с низкой трудоёмкостью на изготовление одной отливки, делает процесс ЛПД наиболее оптимальным в условиях массового и крупносерийного производств.

· Минимальные припуски на мехобработку или не требующие оной, минимальная шероховатость необрабатываемых поверхностей и точность размеров, позволяющая добиваться допусков до ±0,075 мм на сторону.

· Чёткость получаемого рельефа, позволяющая получать отливки с минимальной толщиной стенки до 0,6 мм, а также литые резьбовые профили.

· Чистота поверхности на необрабатываемых поверхностях, позволяет придать отливке товарный эстетический вид.

Также выделяют следующие негативное влияние особенностей ЛПД, приводящие к потере герметичности отливок и невозможности их дальнейшей термообработки:

· Воздушная пористость, причиной образования которой являются воздух и газы от выгорающей смазки, захваченные потоком металла при заполнении формы. Что вызвано неоптимальными режимами заполнения, а также низкой газопроницаемостью формы.

· Усадочные пороки, проявляющиеся из-за высокой теплопроводности форм наряду с затрудненными условиями питания в процессе затвердевания.

· Неметаллические и газовые включения, появляющиеся из-за нетщательной очистки сплава в раздаточной печи, а также выделяющиеся из твёрдого раствора.

Задавшись целью получения отливки заданной конфигурации, необходимо чётко определить её назначение: будут ли к ней предъявляться высокие требования по прочности, герметичности или же её использование ограничится декоративной областью. От правильного сочетания технологических режимов ЛПД, зависит качество изделий, а также затраты на их производство. Соблюдение условий технологичности литых деталей, подразумевает такое их конструктивное оформление, которое, не снижая основных требований к конструкции, способствует получению заданных физико-механических свойств, размерной точности и шероховатости поверхности при минимальной трудоёмкости изготовления и ограниченном использовании дефицитных материалов. Всегда необходимо учитывать, что качество отливок, получаемых ЛПД, зависит от большого числа переменных технологических факторов, связь между которыми установить чрезвычайно сложно из-за быстроты заполнения формы.

Основные параметры, влияющие на процесс заполнения и формирования отливки, следующие:

· давление на металл во время заполнения и подпрессовки;

· скорость прессования;

· конструкция литниково-вентиляционной системы;

· температура заливаемого сплава и формы;

· режимы смазки и вакуумирования.

Сочетанием и варьированием этих основных параметров, добиваются снижения негативных влияний особенностей процесса ЛПД. Исторически выделяются следующие традиционные конструкторско-технологические решения по снижению брака:

· регулирование температуры заливаемого сплава и формы;

· повышение давление на металл во время заполнения и подпрессовки;

· рафинирование и очистка сплава;

· вакуумирование;

· конструирование литниково-вентиляционной системы;

Также, существует ряд нетрадиционных решений, направленных на устранение негативного влияние особенностей ЛПД:

· заполнение формы и камеры активными газами;

· использование двойного хода запирающего механизма;

· использование двойного поршня особой конструкции;

· установка заменяемой диафрагмы;

· проточка для отвода воздуха в камере прессования;

Центробежное литьё

Центробежный метод литья (центробежное литьё) используется при получении отливок, имеющих форму тел вращения. Подобные отливки отливаются из чугуна, стали, бронзы и алюминия. При этом расплав заливают в металлическую форму, вращающуюся со скоростью 3000 об/мин.

Под действием центробежной силы расплав распределяется по внутренней поверхности формы и, кристаллизуясь, образует отливку. Центробежным способом можно получить двухслойные заготовки, что достигается поочерёдной заливкой в форму различных сплавов. Кристаллизация расплава в металлической форме под действием центробежной силы обеспечивает получение плотных отливок.

При этом, как правило, в отливках не бывает газовых раковин и шлаковых включений. Особыми преимуществами центробежного литья является получение внутренних полостей без примене