Установки погружных центробежных насосов (уэцн). Наземное и подземное оборудование уэцн Принцип работы эцн

Погружной асинхронный электродвигатель служит для привода электроцентробежного насоса, электродвигатель крутит вал насоса, на котором расположены ступени.

Принцип действия насоса можно представить следующим образом: жидкость, засасываемая через приемный фильтр, поступает на лопасти вращающегося рабочего колеса, под действием которого она приобретает скорость и давление. Для преобразования кинетической энергии в энергию давления жидкость, выходящая из рабочего колеса, направляется в неподвижные каналы переменного сечения рабочего аппарата, связанного с корпусом насоса, затем жидкость, выйдя из рабочего аппарата попадает на рабочее колесо следующей ступени и цикл повторяется. Центробежные насосы рассчитаны на большую скорость вращения вала.

Запуск насоса обычно производят при закрытой задвижке на нагнетательном патрубке (при этом насос потребляет наименьшую мощность). После запуска насоса задвижку открывают.

При конструировании погружных насосов для добычи нефти к их ступеням предъявляются особые требования: несмотря на ограниченные размеры, они должны развивать высокие напоры, отличаться простотой сборки, обладать высокой надежностью.

В многоступенчатых погружных насосах принята конструкция ступени с “плавающим”, свободно перемещающимся вдоль вала, рабочим колесом, закрепленным лишь при помощи шпонки для восприятия крутящего момента. Осевое усилие, возникающее в каждом рабочем колесе, передается соответствующему направляющему аппарату и воспринимается далее корпусом насоса. Такая конструкция ступени позволяет собрать на очень тонком валу (17 - 22 мм.) большое количество рабочих колес.

Для уменьшения силы трения направляющий аппарат снабжен кольцевым буртиком необходимой высоты и ширины, а рабочее колесо - опорной шайбой (обычно из текстолита). Последняя, являясь еще и своего рода уплотнением, способствует уменьшению перетока жидкости в ступени. Учитывая, что на некоторых режимах работы насоса (например, во время запуска при открытой задвижке, при Нст близком к нулю) осевые силы могут быть направлены вверх и колеса могут всплывать, для уменьшения силы трения между верхним диском рабочего колеса и направляющим аппаратом также применяют промежуточную шайбу из текстолита, но меньшей толщины.

В зависимости от условий работы для изготовления ступеней применяют различные материалы. Обычно рабочие колеса и направляющие аппараты погружных электронасосов изготовляют путем отливки из специального легированного чугуна с последующей механической обработкой. Состояние поверхностей и геометрия проточных каналов рабочего колеса и направляющего аппарата существенно влияют на характеристику ступени. С увеличением шероховатости значительно снижается напор и КПД ступени, поэтому при отливке рабочих органов ЭЦН необходимо добиваться необходимого качества поверхностей проточных каналов.

Давно мечтал написать на бумаге (напечатать на компьютере) все, что знаю про УЭЦНы.
Попытаюсь простым и понятным языком рассказать про Установку Электро-Центробежного-Насоса - основной инструмент, которым добывается 80% всей нефти в России.

Каким то образом получилось так, что всю свою сознательную жизнь я с ними связан. С пяти лет начал ездить с отцом по скважинам. В десять мог сам отремонтировать любую станцию, в двадцать четыре стал инженером на предприятии, где их ремонтировали, в тридцать - заместителем генерального директора, там, где их делают. Знаний по предмету навалом - поделится не жалко, тем более что много-много людей меня постоянно спрашивают о том или ином, касающемся моих насосов. В общем и целом, что бы много раз не повторять одно и тоже разными словами - напишу один раз, а потом буду экзамены принимать;). Да! Будут слайды… без слайдов никак.


Что это такое.
УЭЦН - установка электроцентробежного насоса, она же бесштанговый насос, она же ESP, она же вон те палочки и барабанчики. УЭЦН - именно она (женского роду)! Хотя и состоит из них (мужского роду). Это такая специальная штука, при помощи которой доблестные нефтяники (а точнее сервисники для нефтяников) достают из-под земли пластовую жидкость - так мы называем ту муляку, которую потом (по прохождении специальной обработки) называют всякими интересными словами типа URALS или BRENT. Это целый комплекс оборудования, что бы сделать который, нужны знания металлурга, металообработчика, механика, электрика, электронщика, гидравлика, кабельщика, нефтяника и даже немного гинеколога и проктолога. Штука достаточно интересная и необычная, хотя придумана много лет назад, и с тех пор не сильно поменявшаяся. По большому счету это обычный насосный агрегат. Необычного в нем то, что он тонкий (самый распространенный помещается в скважину с внутренним диаметром 123 мм), длинный (есть установки по 70 метров длиной) и работает в таких поганых условиях, в которых более менее сложный механизм вообще не должен существовать.

Итак, в составе каждой УЭЦН есть следующие узлы:

ЭЦН (электроцентробежный насос) - главный узел - все остальные его предохраняют и обеспечивают. Насосу достается больше всего - но он и делает основную работу - подъем жидкости - жизнь у него такая. Насос состоит из секций, а секции из ступеней. Чем больше ступеней - тем больше напор, который развивает насос. Чем больше сама ступень - тем больше дебит (количество жидкости прокачиваемой за единицу времени). Чем больше дебит и напор - тем больше он жрет энергии. Все взаимосвязано. Насосы кроме дебита и напора отличаются еще габаритом и исполнением - стандартные, износостойкие, коррозионостойкие, износо-коррозионостойкие, совсем-совсем износо-коррозионостойкие.

ПЭД (погружной электродвигатель) Электродвигатель второй главный узел - крутит насос - жрет энергию. Это обычный (в электрическом плане) асинхронный электродвигатель - только он тонкий и длинный. У двигателя два главных параметра - мощность и габарит. И опять же есть разные исполнения стандартный, теплостойкий, коррозионостойкий, особо теплостойкий, и вообще - не убиваемый (как будто бы). Двигатель заполнен специальным маслом, которое, кроме того, что смазывает, еще и охлаждает двигатель, и до кучи компенсирует давление, оказываемое на двигатель снаружи.

Протектор (еще его называют гидрозащитой) - штука которая стоит между насосом и двигателем - он во первых - делит полость двигателя заполненную маслом от полости насоса заполненной пластовой жидкостью, передавая при этом вращение, а во вторых - решает проблему уравнивания давления внутри двигателя и снаружи (там вообще то до 400 атм бывает, это примерно как на трети глубины Марианской впадины). Бывают разных габаритов и опять же исполнения всякие бла бла бла.

Кабель - собственно он кабель. Медный, трехжильный.. Еще он бронированный. Представляете? Бронированный кабель! Конечно, он не выдержит выстрел даже из Макарова, но зато выдержит пять-шесть спусков в скважину и будет там работать - достаточно долго.
Бронирование у него несколько другое, рассчитанное скорее на трение, чем на острый удар - но всетаки. Кабель бывает разных сечений (диаметров жил), отличается броней (обычная оцинкованная или из нержавейки), а еще он отличается температурной стойкостью. Есть кабель на 90, 120, 150, 200 и даже 230 градусов. То есть может неограниченно долго работать при температуре в два раза превышающей температуру кипения воды (заметьте - мы добываем вроде как нефть, а она очень даже не хило горит - но ведь надо же кабель с теплостойкостью свыше 200 градусов - и причем практически повсеместно).

Газосепаратор (или газосепаратор-диспергатор, или просто диспергатор, или сдвоенный газосепаратор, или даже сдвоенный газосепаратор-диспергатор). Штука, которая отделяет свободный газ от жидкости.. вернее жидкость от свободного газа… короче снижает количество свободного газа на входе в насос. Часто, очень часто количества свободного газа на входе в насос вполне достаточно, что бы насос не работал - тогда ставят какое либо газостабилизирующее устройство (названия я перечислил в начале абзаца). Если нет необходимости ставить газосепаратор - ставят входной модуль, жидкость же как то должна попадать в насос? Вот. Что то ставят в любом случае.. Либо модуль, либо газик.

ТМС - это своего рода тюнинг. Кто как расшифровывает - термоманометрическая система, телеметрия.. кто как. Правильно (это старое название - из 80 лохматых годов) - термоманометрическая система, так и будем обзывать - бо почти полностью объясняет функцию устройства - меряет температуру и давление - там - прям внизу - практически в преисподней.

Есть еще защитные устройства. Это обратный клапан (самый распространенный - КОШ - клапан обратный шариковый) - что бы жидкость не сливалась из труб, когда насос остановлен (подъем столба жидкости по стандартной трубе может занимать несколько часов - как то жалко этого времени). А когда нужно поднять насос - этот клапан мешается - из труб постоянно что то льется, загаживая все вокруг. Для этих целей есть сбивной (или сливной) клапан КС - смешная штука - которую каждый раз ломают когда поднимают из скважины.

Все это хозяйство висит на насосно-компрессорных трубах (НКТ - заборы из них делают очень часто в околонефтяных городах). Висит в следующей последовательности:
Вдоль НКТ (2-3 километра) - кабель, сверху - КС, потом КОШ, потом ЭЦН, потом газик (или входной модуль), затем протектор, дальше ПЭД, а еще ниже ТМС. Кабель проходит вдоль ЭЦНа, газика и протектора до самой головы двигателя. Эка. Все сверх на голову короче. Так вот - от верху ЭЦНа до низа ТМСа может быть 70 метров. и сквозь эти 70 метров проходит вал, и все это вращается… а вокруг - большая температура, огромное давление, дофига мехпримесей, коррозионноактиваня среда.. Бедные насосики…

Все штуки секционные, секции длиной не более 9-10 метров (иначе как их в скважину засунуть?) Собирается установка непосредственно на скважине: ПЭД, к нему пристегивается кабель, протектор, газик, секции насоса, клапана, трубы.. Да! не забываем прикреплять кабель ко всему при помощи клямс - (такие пояски стальные специальные). Все это макается в скважину и долго (надеюсь) там работает. Что бы это все запитать (и как-то этим управлять) на земле ставят повышающий трансформатор (ТМПН) и станцию управления.

Вот такой штукой добывают то, что потом превращается в деньги (бензин, дизтопливо, пластмассы и прочую фигню).

Попробуем разобраться.. как это все устроено, как делается, как выбирать и как использовать.

Назначение и технические данные УЭЦН.

Установки погружных центробежных насосов предназначены для откачки из нефтяных скважин, в том числе и наклонных пластовой жидкости, содержащей нефть, воду и газ, и механические примеси. В зависимости от количества различных компонентов, содержащихся в откачиваемой жидкости, насосы установок имеют исполнение обычное и повышенной корозионно-износостойкости. При работе УЭЦН, где в откачиваемой жидкости концентрация мехпримесей превышает допустимую 0,1 грамм\литр происходит засорение насосов, интенсивной износ рабочих агрегатов. Как следствие, усиливается вибрация, попадание воды в ПЭД по торцевым уплотнениям, происходит перегрев двигателя, что приводит к отказу работы УЭЦН.

Условное обозначение установок:

УЭЦН К 5-180-1200, У 2 ЭЦН И 6-350-1100,

Где У – установка, 2 –вторая модификация, Э – с приводом от погружного электродвигателя, Ц – центробежный, Н – насос, К – повышенный коррозионостойкости, И – повышенной износостойкости, М – модульного исполнения, 6 – группы насосов, 180, 350 – подача м\сут, 1200, 1100 – напор, м.в.ст.

В зависимости от диаметра эксплуатационной колонны, максимального поперечного габарита погружного агрегата, применяют ЭЦН различных групп – 5,5, а 6. Установка группы 5 с поперечным диаметром не менее 121,7 мм. Установки группы 5 а с поперечным габаритом 124 мм – в скважинах внутренним диаметром не менее 148,3 мм. Насосы также подразделяют на три условные группы – 5,5 а, 6. Диаметры корпусов группы 5 – 92 мм, группы 5 а – 103 мм, группы 6 – 114 мм. Технические характеристики насосов типа ЭЦНМ и ЭЦНМК приведены в приложении 1.

Состав и комплектность УЭЦН

Установка УЭЦН состоит из погружного насосного агрегата (электродвигателя с гидрозащитой и насоса), кабельной линии (круглого плоского кабеля с муфтой кабельного ввода), колонны НКТ, оборудования устья скважины и наземного электрооборудования: трансформатора и станции управления (комплектного устройства) (см. рисунок 1.1.). Трансформаторная подстанция преобразует напряжение промысловой сети дооптимальной величины на зажимах электродвигателя с учетом потерь напряжения в кабеле. Станция управления обеспечивает управление работой насосных агрегатов и его защиту при оптимальных режимах.

Погружной насосный агрегат, состоящий из насоса и электродвигателя с гидрозащитой и компенсатора, опускается в скважину по НКТ. Кабельная линия обеспечивает подвод электроэнергии к электродвигателю. Кабель крепится к НКТ, металлическими колесами. На длине насоса и протектора кабель плоский, прикреплен к ним металлическим колесами и защищен от повреждений кожухами и хомутами. Над секциями насоса устанавливаются обратный и сливной клапаны. Насос откачивает жидкость из скважины и подает ее на поверхность по колонне НКТ (см. рисунок 1.2.)

Оборудование устья скважины обеспечивает подвеску на фланце обсадной колонны НКТ с электронасосом и кабелем, герметизацию труб и кабеля, а также отвод добываемой жидкости в выходной трубопровод.

Насос погружной, центробежный, секционный, многоступенчатый не отличается по принципу действия от обычных центробежный насосов.

Отличие его в том, что он секционный, многоступенчатый, с малым диаметром рабочих ступеней – рабочих колес и направляющих аппаратов. Выпускаемые для нефтяной промышленности погружные насосы содержат от 1300 до 415 ступеней.

Секции насоса, связанные фланцевыми соединениями, представляют собой металлический корпус. Изготовленный из стальной трубы длиной 5500 мм. Длина насоса определяется числом рабочих ступеней, число которых, в свою очередь, определяется основными параметрами насоса. – подачей и напором. Подача и напор ступеней зависят от поперечного сечения и конструкции проточной части (лопаток), а также от частоты вращения. В корпусе секций насоса вставляется пакет ступеней представляющих собой собрание на валу рабочих колес и направляющих аппаратов.

Рабочие колеса устанавливаются на валу на призматической шпонке по ходовой посадке и могут перемещаться в осевом направлении. Направляющие аппараты закреплены от поворота в корпусе ниппеля, расположенным в верхней части насоса. Снизу в корпус ввинчивают основание насоса с приемными отверстиями и фильтром, через которые жидкость из скважины поступает к первой ступени насоса.

Верхний конец вала насоса вращается в подшипниках сальника и заканчивается специальной пяткой, воспринимающей нагрузку на вал и его вес через пружинное кольцо. Радиальные усилия в насосе воспринимаются подшипниками скольжения, устанавливаемыми в основании ниппеля и на валу насоса.

В верхней части насоса находится ловильная головка, в которой устанавливается обратный клапан и к которой крепится НКТ.

Электродвигатель погружной, трехфазовый, асинхронный, маслозаполненный с короткозамкнутым ротором в обычном исполнении и коррозионностойком исполнениях ПЭДУ (ТУ 16-652-029-86). Климатическое исполнение – В, категория размещения – 5 по ГОСТ 15150 – 69. В основании электродвигателя предусмотрены клапан для закачки масла и его слива, а также фильтр для очистки масла от механических примесей.

Гидрозащита ПЭД состоит из протектора и компенсатора. Она предназначена для предохранения внутренней полости электродвигателя от попадания пластовой жидкости, а также компенсации температурных изменений объемов масла и его расхода. (см. рисунок 1.3.)

Протектор двухкамерный, с резиновой диафрагмой и торцевыми уплотнениями вала, компенсатор с резиновой диафрагмой.

Кабель трехжильный с полиэтиленовой изоляцией, бронированный. Кабельная линия, т.е. кабель намотанный на барабан, к основанию которого присоединен удлинитель – плоский кабель с муфтой кабельного ввода. Каждая жила кабеля имеет слой изоляции и оболочку, подушки из прорезиненной ткани и брони. Три изолированные жилы плоского кабеля уложены параллельно в ряд, а круглового скручены по винтовой линии. Кабель в сборе имеет унифицированную муфту кабельного ввода К 38, К 46 круглого типа. В металлическом корпусе муфты герметично заделаны с помощью резинового уплотнения, к токопроводящим жилам прикреплены наконечники.

Конструкция установок УЭЦНК, УЭЦНМ с насосом имеющим вал и ступени, выполненные из коррозионностойких материалов, и УЭЦНИ с насосом, имеющим пластмассовые рабочие колеса и резинометаллические подшипники аналогична конструкция установок УЭЦН.

При большом газовом факторе применяют насосные модули – газосепараторы, предназначенные для уменьшения объемного содержания свободного газа на приеме насоса. Газосепараторы соответствуют группе изделий 5, виду 1 (восстанавливаемые) по РД 50-650-87, климатическое исполнение - В, категория размещения – 5 по ГОСТ 15150-69.

Модули могут быть поставлены в двух исполнениях:

Газосепараторы: 1 МНГ 5, 1 МНГ5а, 1МНГ6 – обычного исполнения;

Газосепараторы 1 МНГК5, МНГ5а – повышенной коррозионной стойкости.

Модули насосные устанавливаются между входным модулем и модулем-секцией погружного насоса.

Погружной насос, электродвигатель, и гидрозащита соединяются между собой фланцами и шпильками. Валы насоса, двигателя и протектора имеют на концах шлицы и соединяются шлицевыми муфтами.

Комплектующие подъемы и оборудование установок ЭЦН приведены в приложении 2.

Технические характеристика ПЭД

Приводом погружных центробежных насосов служит специальный маслозаполненный погружной ассинхронный электродвигатель трехфазного переменного тока с короткозамкнутым ротором вертикального исполнения типа ПЭД. Электродвигатели имеют диаметры корпусов 103, 117, 123, 130, 138 мм. Поскольку диаметр электродвигателя ограничен, при больших мощностях двигатель имеет большую длину, а в некоторых случаях выполнения секционным. Так как электродвигатель работает погруженным в жидкость и часто под большим гидростатическим давлением, основное условие надежной работы – его герметичность (см. рисунок 1.3).

ПЭД заполняется специальным маловязким, высокой диэлектрической прочности маслом, служащим как для охлаждения, так и для смазки деталей.

Погружной электродвигатель состоит из статора, ротора, головки, основания. Корпус статора изготавливается из стальной трубы, на концах которой предусмотрена резьба для подсоединения головки и основания двигателя. Магнитопровод статора собирается из активных и немагнитных шихтованных жестей, имеющих пазы, в которых располагаются обмотка. Обмотка статора может быть однослойной, протяжной, катушечной или двухслойной, стержневой, петлевой. Фазы обмотки соединены.

Активная часть магнитопровода совместно с обмоткой создает в электродвигателей вращающееся магнитное поле, а немагнитная часть служит опорами для промежуточных подшипников ротора. К концам обмотки статора припаивают выводные концы, изготовленные из многожильной медного провода с изоляцией, имеющий высокую электрическую и механическую прочность. К концам припаивают штежельные гильзы, в которые входят наконечники кабеля. Выводные концы обмотки соединяют с кабелем через специальную штежельную колодку (муфту) кабельного ввода. Токоввод двигателя может быть и ножевого типа. Ротор двигателя короткозамкнутый, многосекционный. В его состав входят вал, сердечники (пакеты ротора), радиальные опоры (подшипники скольжения). Вал ротора выполнен из пустотелой калиброванной стали, сердечники из листовой электротехнической стали. Сердечники набираются на вал, чередуясь с радиальными подшипниками, и соединены с валом шпонками. Набор сердечников на валу затянуть в осевом направлении гайками или турбинкой. Турбинка служит для принудительной циркуляции масла для выравнивания температуры двигателя на длине статора. Для обеспечения циркуляции масла на погружной поверхности магнитопровода имеются продольные пазы. Масло циркуляцией через эти пазы, фильтра в нижней части двигателя, где оно очищается, и через отверстие в валу. В головке двигателя расположены пята и подшипник. Переводник в нижней части двигателя служит для размещения фильтра, перепускного клапана и клапана для закачки масла в двигатель. Электродвигатель секционного исполнения состоит из верхней и нижней секций. Каждая секция имеет такие же основные узлы. Технические характеристики ПЭД приведены в приложении 3.

Основные технические данные кабеля

Подвод электроэнергии к электродвигателю установки погружного насоса осуществляется через кабельную линию, состоящую из питающего кабеля и муфты кабельного ввода для сочленения с электродвигателем.

В зависимости от назначения в кабельную линию могут входить:

Кабель марок КПБК или КППБПС – в качестве основного кабеля.

Кабель марки КПБП (плоский)

Муфта кабельного ввода круглая или плоская.

Кабель КПБК состоит из медных однопроволочных или многопроволочных жил, изолированных в два слоя полиэтиленом высокой прочности и скрученных между собой, а также подушки и брони.

Кабели марок КПБП и КППБПС в общей шланговой оболочке состоят из медных однопроволочных и многопроволочных жил, изолированных полиэтиленом высокой плотности и уложенных в одной плоскости, а так же из общей шланговой оболочке, подушки и брони.

Кабели марки КППБПС с отдельно отшлангованными жилами состоят из медных одно-,многопроволочных жил, изолированных в два слоя полиэтилена высокого давления и уложенных в одной плоскости.

Кабель марки КПБК имеет:

Рабочее напряжение В – 3300

Кабель марки КПБП имеет:

Рабочее напряжение, В - 2500

Допустимое давление пластовой жидкости, МПа – 19,6

Допустимый газовый фактор, м/т – 180

Кабель марки КПБК и КПБП имеет допустимые температуры окружающей среды от 60 до 45 С воздуха, 90 С – пластовой жидкости.

Температуры кабельных линий приведены в приложении 4.

1.2.Краткий обзор отечественных схем и установок.

Установки погружных центробежных насосов предназначены для откачивания нефтяных скважин, в том числе наклонных, пластовой жидкости, содержащей нефть и газ, и механической примеси.

Установки выпускаются двух видов – модульные и немодульные; трех исполнений: обычное, коррозионостойкое и повышенной износостойкости. Перекачиваемая среда отечественных насосов должна иметь следующие показатели:

· пластовая дикость – смесь нефти, попутной воды и нефтяного газа;

· максимальная кинематическая вязкость пластовой жидкости 1 мм\с;

· водородный показатель попутной воды рН 6,0-8.3;

· максимальное содержание полученной воды 99%;

· свободного газа на приеме до 25%, для установок с модулями – сепараторами до 55%;

· максимальная температура добываемой продукции до 90С.

В зависимости от поперечных размеров применяемых в комплекте установок погружных центробежных электронасосов, элетродвигателей и кабельных линий установки условно делятся на 2 группы 5 и 5 а. С диаметрами обсадных колонн 121.7 мм; 130 мм; 144,3 мм соответственно.

Установка УЭЦ состоит из погружного насосного агрегата, кабеля в сборе, наземного электрооборудования – трансформаторной комилентной подстанции. Насосный агрегат состоит из погружного центробежного насоса и двигателя с гидрозащитой, спускается в скважину на колонне НКТ. Насос погружной, трехфазный, асинхронный, маслозаполненный с ротором.

Гидрозащита состоит из протектора и компенсатора. Кабель трехжильный с полиэтиленовой изоляцией, бронированный.

Погружной насос, электродвигатель и гидрозащита соединяются между собой фланцами и шпильками. Валы насоса, двигателя и протектора имеют на концах шлицы и соединяются шлицевыми муфтами.

1.2.2. Погружной центробежный насос.

Погружной центробежный насос по принципу действия не отличается от обычных центробежных насосов, применяемых для перекачки жидкости. Отличие в том, что он многосекционный с малым диаметром рабочих ступеней – рабочих колес и направляющих аппаратов. Рабочие колеса и направляющие аппараты насосов обычного исполнения изготавливают из модифицированного серого чугуна, насосов коррозионностойких – чугуна типа «нирезист», износостойких колес – их полиамидных смол.

Насос состоит из секций, число которых зависит от основных параметров насоса – напора, но не более четырех. Длина секции до 5500 метров. У модульных насосов состоит из входного модуля, модуля – секции. Модуль – головки, обратного и спускного клапанов. Соединение модулей между собой и входного модуля с двигателем – фланцевое соединение (кроме входного модуля, двигателем или сепаратором) уплотняются резиновыми манжетами. Соединение валов модулей-секций между собой, модуля-секции с валом входного модуля, вала входного модуля с валом гидрозащиты двигателя осуществляется шлицевыми муфтами. Валы модулей-секций всех групп насосов имеющих одинаковые длины корпусов унифицированы по длине.

Модуль-секция состоит из корпуса, вала, пакета ступеней (рабочих колес и направляющих аппаратов), верхнего и нижнего подшипников, верхней осевой опоры, головки, основания, двух ребер и резиновых колец. Ребра предназначены для защиты плоского кабеля с муфтой от механических повреждений.

Входной модуль состоит из основания с отверстиями для прохода пластовой жидкости, подшипниковых втулок и сетки, вала с защитными втулками и шлицевой муфтой, предназначенной для соединения вала модуля с валом гидрозащиты.

Модуль-головка состоит из корпуса, с одной стороны которого имеется внутренняя коническая резьба для подсоединения обратного клапана, с другой стороны – фланец для подсоединения к модулю-секции, двух ребер и резинового кольца.

В верхней части насоса имеется ловильная головка.

Отечественной промышленностью выпускаются насосы с подачей (м/сут):

Модульные – 50,80,125,200.160,250,400,500,320,800,1000.1250.

Немодульные – 40.80,130.160,100,200,250,360,350,500,700,1000.

Следующих напоров (м) - 700, 800, 900, 1000, 1400, 1700, 1800, 950, 1250, 1050, 1600, 1100, 750, 1150, 1450, 1750, 1800, 1700, 1550, 1300.

1.2.3. Погружные электродвигатели

Погружные электродвигатели состоят из электродвигателя и гидрозащиты.

Двигатели трехфазные, ассинхронные, короткозамкнутые, двухполюсные, погружные, унифицированной серии. ПЭД в нормальном и коррозионном исполнениях, климатического исполнения В, категории размещения 5, работают от сети переменного тока частотой 50 Гц и используются в качестве привода погружных центробежных насосов.

Двигатели предназначены для работы в среде пластовой жидкости (смесь нефти и попутной воды в любых пропорциях) с температурой до 110 С содержащей:

· мехпримесей не более 0.5 г/л;

· свободного газа не более 50%;

· сероводорода для нормальных, не более 0.01 г/л, коррозионностойких до 1,25 г/л;

Гидрозащитное давление в зоне работы двигателя не более 20 МПа. Электродвигатели заполняются маслом с пробивным напряжением не менее 30 КВ. Предельная длительно допускаемая температура обмотки статора электродвигателя (для двигателя с диаметром корпуса 103 мм) равна 170 С, остальных электродвигателей 160 С.

Двигатель состоит из одного или нескольких электродвигателей (верхнего, среднего и нижнего, мощностью от 63 до 630 КВт) и протектора. Электродвигатель состоит из статора, ротора, головки с токовводом, корпуса.

1.2.4. Гидрозащита электродвигателя.

Гидрозащита предназначена для предотвращения проникновения пластовой жидкости во внутреннюю полость электродвигателя, компенсации объема масла во внутренней полости от температуры электродвигателя и передачи крутящего момента от вала электродвигателя к валу насоса. Существует несколько вариантов гидрозащиты: П, ПД, Г.

Гидрозащиту выпускают обычного и коррозионностойкого исполнений. Основным типом гидрозащиты для комплектации ПЭД принята гидрозащита открытого типа. Гидрозащита открытого типа требует применения специальной барьерной жидкости плотностью до 21 г/см, обладающий физико-химическими свойствами с пластовой жидкостью и маслом.

Гидрозащита состоит из двух камер сообщенных трубкой. Изменение объемов жидкого диэлектрика в двигателе компенсируется перетоком барьерной жидкости из одной камеры в другую. В гидрозащите закрытого типа применяются резиновые диафрагмы. Их эластичность компенсирует изменение объема масла.

24. Условие фонтанирования скважин, определение энергии и удельного расхода газа при работе газожидкостного подъёмника.

Условия фонтанирования скважин .

Фонтанирование скважин происходит в том случае, если перепад давления между пластовым и забойным будет достаточным для преодоления противодавления столба жидкости и потерь давления на трение, тоесть фонтанирование происходит под действием гидростатического давления жидкости или энергии расширяющегося газа. Большинство скважин фонтанирует за счет энергии газа и гидростатического напора одновременно.

Газ, находящийся в нефти, обладает подъемной силой, которая проявляется в форме давления на нефть. Чем больше газа расстворено в нефти, тем меньше будет плотность смеси и тем выше поднимается уровень жидкости. Достигнув устья, жидкость переливается, и скважина начинает фонтанировать. Общим обязательным условием для работы любой фонтанирующей скважины будет следующее основное равенство:

Рс = Рг+Ртр+ Ру; где

Рс - давление на забое, РГ, Ртр, Ру - гидростатическое давление столба жидкости в скважине, расчитанное по вертикали, потери давления на трение в НКТ и противодавление на устье, соответственно.

Различают два вида фонтанирования скважин:

· Фонтанирование жидкости, не содержащей пузырьки газа - артезианское фонтанирование.

· Фонтанирование жидкости, содержащей пузырьки газа облегчающего фонтанирование - наиболее распространенный способ фонтанирования.

Установки погружных центробежных насосов в модульном исполнении УЭЦНМ и УЭЦНМК предназначены для откачки из нефтяных скважин , в том числе и наклонных, пластовой жидкости, содержащей нефть, воду, газ, механические примеси.

Установки имеют два исполнения -

  • § обычное
  • § коррозионно-стойкое.

Пример условного обозначения установки

  • § при заказе: УЭЦНМ5-125-1200 ВК02 ТУ 26-06-1486 - 87,
  • § при переписке и в технической документации: УЭЦНМ5-125-1200 ТУ 26-06-1486 - 87,

где У- установка; Э - привод от погружного двигателя; Ц - центробежный; Н - насос; М - модульный; 5 - группа насоса; 125 - подача, м 3 /сут: 1200 - напор, м; ВК - вариант комплектации; 02 - порядковый номер варианта комплектации по ТУ.

Для установок коррозионностойкого исполнения перед обозначением группы насоса добавляется буква «К».

Показатели назначения по перекачиваемым средам следующие :

  • § среда - пластовая жидкость (смесь нефти, попутной воды и нефтяного газа);
  • § максимальная кинематическая вязкость однофазной жидкости, при которой обеспечивается работа насоса без изменения напора и к. п. д. - 1 мм 2 /с;
  • § водородный показатель попутной воды рН 6,0 - 8,5;
  • § максимальное массовое содержание твердых частиц - 0,01 % (0,1 г/л);
  • § микротвердость частиц - не более 5 баллов по Моосу;
  • § максимальное содержание попутной воды - 99%;
  • § максимальное содержание свободного газа у основания двигателя - 25%, для установок с насосными модулями-газосепараторами (по вариантам комплектации) - 55 %, при этом соотношение в откачиваемой жидкости нефти и воды регламентируется универсальной методикой подбора УЭЦН к нефтяным скважинам (УМП ЭЦН-79);

максимальная концентрация сероводорода : для установок обычного исполнения - 0,001% (0,01 г/л); для установок коррозионностойкого исполнения - 0,125% (1,25 г/л);

температура перекачиваемой жидкости в зоне работы погружного агрегата - не более 90 °С.

Для установок, укомплектованных кабельными линиями К43, в которых взамен удлинителя с теплостойким кабелем марки КФСБ используется удлинитель с кабелем марки КПБП, температуры должны быть не более:

  • § для УЭЦНМ5 и УЭЦНМК5 с двигателем мощностью 32 кВт - 70 °С;
  • § для УЭЦНМ5, 5А и УЭЦНМК5, 5А с двигателями мощностью 45 - 125 кВт - 75 °С;
  • § для УЭЦНМ6 и УЭЦНМК6 с двигателями мощностью 90 - 250 кВт - 80 °С.

Лито-фациальная модель пласта Ю13 Крапивинского месторождения Примечание . Внутренний диаметр колонны обсадных труб не менее и поперечный габарит насосной установки с кабелем не более соответственно: для установок УЭЦНМ5 - 121,7 и 112 мм: для УЭЦНМ5А - 130 и 124 мм; для УЭЦНМ6 с подачей до 500 м 3 /сут (включительно) - 144,3 и 137 мм, с подачей свыше 500 м 3 сут - 148,3 и 140,5 мм.

Установки УЭЦНМ и УЭЦНМК (рис. 1) состоят из

  • § погружного насосного агрегата, кабеля в сборе 6,
  • § наземного электрооборудования - трансформаторной комплектной подстанции (индивидуальной КТППН или кустовой КТППНКС) 5.

Вместо подстанции можно использовать трансформатор и комплектное устройство.

Насосный агрегат, состоящий из погружного центробежного насоса 7 и двигателя 8 (электродвигатель с гидрозащитой), спускается в скважину на колонне насосно-компрессорных труб 4. Насосный агрегат откачивает пластовую жидкость из скважины и подает ее на поверхность по колонне НКТ.

Кабель, обеспечивающий подвод электроэнергии к электродвигателю, крепится к гидрозащите, насосу и насосно-компрессорным трубам металлическими поясами (клямсами) 3, входящими в состав насоса.

Комплектная трансформаторная подстанция (трансформатор и комплектное устройство) преобразует напряжение промысловой сети до значения оптимального напряжения на зажимах электродвигателя с учетом потерь напряжения в кабеле и обеспечивает управление работой насосного агрегата установки и ее защиту при аномальных режимах.

Обратный клапан 1 предназначен для предотвращения обратного вращения (турбинный режим) ротора насоса под воздействием столба жидкости в колонне НКТ при остановках и облегчения, тем самым, повторного запуска насосного агрегата. Обратный клапан ввинчен в модуль - головку насоса, а спускной - в корпус обратного клапана.

Спускной клапан 2 служит для слива жидкости из колонны НКТ при подъеме насосного агрегата из скважины.

Допускается устанавливать клапаны выше насоса в зависимости от газосодержания у сетки входного модуля насоса. При этом клапаны должны располагаться ниже сростки основного кабеля с удлинителем, так как в противном случае поперечный габарит насосного агрегата будет превышать допустимый.

Для откачивания пластовой жидкости, содержащей свыше 25 - до 55% (по объему) свободного газа у приемной сетки входного модуля, к насосу подключают насосный модуль - газосепаратор .

Двигатель - асинхронный погружной, трехфазный, короткозамкнутый, двухполюсный, маслонаполненный.

Установки могут комплектоваться двигателями типа 1ПЭД по ТУ 16-652.031 - 87, оснащенными системой контроля температуры и давления пластовой жидкости.

При этом установки должны комплектоваться устройством комплектным ШГС 5805-49ТЗУ1.

Соединение сборочных единиц насосного агрегата - фланцевое (на болтах и шпильках), валов сборочных единиц - при помощи шлицевых муфт.

Соединение кабеля в сборе с двигателем осуществляется при помощи муфты кабельного ввода.

Подключательный выносной пункт предназначен для предупреждения прохождения газа по кабелю в КТППН (КТППНКС) или комплектное устройство.

Оборудование устья скважины обеспечивает подвеску колонны НКТ с насосным агрегатом и кабелем в сборе на фланце обсадной колонны, герметизацию затрубного пространства, отвод пластовой жидкости в выкидной трубопровод.

Насос - погружной центробежный модульный. Рисунок 2.

Погружной центробежный модульный насос (в дальнейшем именуемый «насос») - многоступенчатый вертикального исполнения. Насос изготовляют в двух исполнениях: обычном ЭЦНМ и коррозионностойком ЭЦНМК.

Насос состоит из входного модуля, модуля-секции (модулей-секций), модуля-головки, обратного и спускного клапанов (рис. 2). Допускается уменьшение числа модулей-секций в насосе при соответствующем укомплектовании погружного агрегата двигателем необходимой мощности.

Для откачивания пластовой жидкости, содержащей у сетки входного модуля насоса свыше 25 % (по объему) свободного газа, к насосу следует подсоединить насосный модуль - газосепаратор (рис..3). устанавливается между входным модулем и модулем-секцией.

Наиболее известны две конструкции газосепараторов:

газосепараторы с противотоком;

§ центробежные или роторные газосепараторы.

Для первого типа, применяемого в некоторых насосах Reda, при попадании жидкости в газосепаратор, она вынуждена резко менять направление движения. Некоторые газовые пузырьки сепарируются уже на входе в насос. Другая часть, попадая в газосепаратор, поднимается внутри его и выходит из корпуса. отечественных установках, а также насосах фирмы Centrilift и Reda, используются роторные газосепараторы, которые работают аналогично центрифуге. Лопатки центрифуги, вращающиеся с частотой 3500 об/мин, вытесняют более тяжелые жидкости на периферию, и далее через переходной канал вверх в насос, тогда как более легкая жидкость (пар) остается около центра и выходит через переходной канал и выпускные каналы обратно в скважину.

Рис.3. Газосепаратор:

1 - головка; 2 - втулка радиального подшипника; 3 - вал: 4 - сепаратор; 5 - направляющие аппараты: 6 - рабочее колесо; 7 - корпус; 8 - шнек; 9 - основание

Соединение модулей между собой и входного модуля с двигателем - фланцевое. Соединения (кроме соединений входного модуля с двигателем и входного модуля с газосепаратором) уплотняются резиновыми кольцами.

Соединение валов модулей-секций между собой, модуля-секции с валом входного модуля, вала входного модуля с валом гидрозащиты двигателя осуществляется шлицевыми муфтами.

Соединение валов газосепаратора, модуля-секции н входного модуля между собой также осуществляется при помощи шлицевых муфт.

Валы модулей-секций всех групп насосов, имеющих одинаковые длины корпусов (2, 3 и 5м), унифицированы по длине. Валы модулей-секций и входных модулей для насосов обычного исполнения изготовляют из калиброванной коррозионно-стойкой высокопрочной стали марки ОЗХ14Н7В и имеют на торце маркировку «НЖ», для насосов повышенной коррозионностойкости - из калиброванных прутков из сплава Н65Д29ЮТ-ИШ К-монель и имеют на торцах маркировку «М».

Рабочие колеса и направляющие аппараты насосов обычного исполнения изготовляют из модифицированного серого чугуна, насосов коррозионностойкого исполнения - из модифицированного чугуна ЧН16Д7ГХШ типа «нирезист». Рабочие колеса насосов обычного исполнения можно изготовлять из радиационно-модифицированного полиамида.

Модуль-головка состоит из корпуса, с одной стороны которого имеется внутренняя коническая резьба для подсоединения обратного клапана (насосно-компрессорной трубы), с другой стороны - фланец для подсоединения к модулю-секции двух ребер и резинового кольца. Ребра прикреплены к корпусу модуля-головки болтом с гайкой и пружинной шайбой. Резиновое кольцо герметизирует соединение модуля-головки с модулем-секцией.

Модули-головки насосов группы 5 и 5А имеют резьбу муфты насосно-компрессорной гладкой трубы 73 ГОСТ 633 - 80.

Модуль-головка насосов группы 6 имеет два исполнения: с резьбой муфты 73 и 89 ГОСТ 633 - 80.

Модуль-головка с резьбой 73 применяется в насосах с номинальной подачей до 800 м 3 /сут. с резьбой 89 - более 800 м 3 сут.

Модуль-секция состоит из корпуса, вала, пакета ступеней (рабочих колес и направляющих аппаратов), верхнего подшипника, нижнего подшипника, верхней осевой опоры, головки, основания, двух ребер и резиновых колец. Соединение модулей-секций между собой, а также резьбовые соединения и зазор между корпусом и пакетом ступеней герметизируются резиновыми кольцами.

Ребра предназначены для защиты плоского кабеля с муфтой от механических повреждений о стенку обсадной колонны при спуске и подъеме насосного агрегата. Ребра прикреплены к основанию модуля-секции болтом с гайкой и пружинной шайбой.

Грань головки модуля-секции, имеющая минимальное угловое смещение относительно поверхности основания между ребрами, помечена пятном краски для ориентирования относительно ребер другого модуля-секции при монтаже на скважине.

Модули-секции поставляются опломбированными гарантийными пломбами клеймом предприятия-изготовителя на паяных швах.

Входной модуль состоит из основания с отверстиями для прохода пластовой жидкости, подшипниковых втулок и сетки, вала с защитными втулками и шлицевой муфты для соединения вала модуля с валом гидрозащиты.

При помощи шпилек модуль верхним концом подсоединяется к модулю-секции. Нижний конец входного модуля присоединяется к гидрозащите двигателя.

Входной модуль для насосов группы 6 имеет два исполнения: одно - с валом диаметром 25 мм - для насосов с подачами 250, 320, 500 и 800 м 3 /сут, другое - с валом диаметром 28 мм - для насосов с подачами 1000, 1250 м 3 /сут.

Обратные клапаны насосов групп 5 и 5А, рассчитанных на любую подачу, и группы 6 с подачей до 800 м 3 /сут включительно конструктивно одинаковы и имеют резьбы муфты гладкой насосно-компрессорной трубы 73 ГОСТ 633 - 80. Обратный клапан для насосов группы 6 с подачей свыше 800 м 3 /сут имеет резьбы муфты гладкой насосно-компрессорной трубы 89 ГОСТ 633 - 80.

Спускные клапаны имеют такие же исполнения по резьбам, как обратные.

Пояс для крепления кабеля состоит из стальной пряжки и закрепленной на ней стальной полосы.

ПОГРУЖНЫЕ ДВИГАТЕЛИ

Погружные двигатели состоят из электродвигателя (рис. 4) и гидрозащиты (рис. 5) .

Двигатели трехфазные асинхронные короткозамкнутые двухполюсные погружные унифицированной серии ПЭД в нормальном и коррозионностойком исполнениях, климатического исполнения В, категории размещения 5 работают от сети переменного тока частотой 50 Гц и используются в качестве привода погружных центробежных насосов в модульном исполнении для откачки пластовой жидкости из нефтяных скважин.

Двигатели предназначены для работы в среде пластовой жидкости (смесь нефти и попутной воды в любых пропорциях) с температурой до 110 °С, содержащей:

механические примеси с относительной твердостью частиц не более 5 баллов по шкале Мооса - не более 0,5 г/л;

сероводород : для нормального исполнения - не более 0,01 г/л; для коррозионностойкого исполнения - не более. 1,25 г/л;

свободный газ (по объему) - не более 55%. Гидростатическое давление в зоне работы двигателя не более 25 МПа.

Допустимые отклонения от номинальных значений питающей сети:

по напряжению - от минус 5% до плюс 10%; по частоте переменного тока - ±0,2 Гц; по току - не выше номинального на всех режимах работы, включая вывод скважины на режим.

В шифре двигателя ПЭДУСК-125-117ДВ5 ТУ 16-652.029 - 86 приняты следующие обозначения: ПЭДУ - погружной электродвигатель унифицированный; С - секционный (отсутствие буквы - несекционный); К - коррозионностойкий (отсутствие буквы - нормальное);125 - мощность, кВт; 117 - диаметр корпуса, мм; Д - шифр модернизации гидрозащиты (отсутствие буквы - основная модель); В5 - климатическое исполнение и категория размещения.

Рис. 4.

1 - крышка: 2 - головка; 3 - пята: 4 - подпятник; 5 - пробка: 6 - обмотка статора; 7 - втулка; 8 - ротор; 9 - статор; 10 - магнит; 11 - фильтр; I2 - колодка; 13 - кабель с наконечником; 14 - кольцо; 15 - кольцо уплотнительное; 16 - корпус: 17, 18 - пробка

В шифре электродвигателя ЭДК45-117В приняты следующие обозначения: ЭД - электродвигатель; К - коррозионностойкий (отсутствие буквы - нормальное исполнение); 45 - мощность, кВт; 117 - диаметр корпуса, мм; В - верхняя секция (отсутствие буквы - несекционный, С - средняя секция, Н - нижняя секция).

В шифре гидрозащиты ПК92Д приняты следующие обозначения: П - протектор; К - коррозионностойкая (отсутствие буквы - исполнение нормальное); 92 - диаметр корпуса в мм; Д - модернизация с диафрагмой (отсутствие буквы - основная модель с барьерной жидкостью).

Пуск, управление работой двигателями и его защита при аварийных режимах осуществляются специальными комплектными устройствами.

Пуск, управление работой и защита двигателя мощностью 360 кВт с диаметром корпуса 130 мм осуществляются комплектным тиристорным преобразователем.

Электродвигатели заполняются маслом МА-ПЭД с пробивным напряжением не менее 30 кВ.

Предельная длительно допускаемая температура обмотки статора электродвигателей (по сопротивлению для электродвигателей диаметром корпуса 103 мм) равна 170 °С, а остальных электродвигателей - 160 °С.

Двигатель состоит из одного или нескольких электродвигателей (верхнего, среднего и нижнего мощностью от 63 до 360 кВт) и протектора.

Электродвигатель (см. рис. 4) состоит из статора, ротора, головки с токовводом, корпуса.

Статор выполнен из трубы, в которую запрессован магнитопровод, изготовленный из листовой электротехнической стали.

Обмотка статора - однослойная протяжная катушечная. Фазы обмотки соединены в звезду.

Ротор короткозамкнутый, многосекционный. В состав ротора входят вал, сердечники, радиальные опоры (подшипники скольжения), втулка. Вал пустотелый, изготовлен из высокопрочной стали, со специальной отделкой поверхности. В центральное отверстие вала ротора верхнего и среднего электродвигателей ввинчены две специальные гайки, между которыми помещен шарик, перекрывающий слив масла из электродвигателя при монтаже.

Сердечники выполнены из листовой электротехнической стали. В пазы сердечников уложены медные стержни, сваренные по торцам с короткозамыкающими кольцами. Сердечники набираются на вал, чередуясь с радиальными подшипниками. Набор сердечников на валу зафиксирован с одной стороны разрезным вкладышем, а с другой - пружинным кольцом.

Втулка служит для смещения радиальных подшипников ротора при ремонте электродвигателя.

Головка представляет собой сборочную единицу, монтируемую в верхней части электродвигателя (над статором). В головке расположен узел упорного подшипника, состоящий из пяты и подпятника, крайние радиальные подшипники ротора, узел токоввода (для несекционных электродвигателей) или узел электрического соединения электродвигателей (для секционных электродвигателей).

Токоввод - изоляционная колодка, в пазы которой вставлены кабели с наконечниками.

Узел электрического соединения обмоток верхнего, среднего и нижнего электродвигателей состоит из выводных кабелей с наконечниками и изоляторов, закрепленных в головках и корпусах торцов секционирования.

Отверстие под пробкой служит для закачки масла в протектор при монтаже двигателя.

В корпусе, находящемся в нижней части электродвигателя (под статором), расположены радиальный подшипник ротора и пробки. Через отверстия под пробку проводят закачку и слив масла в электродвигатель.

В этом корпусе электродвигателей имеется фильтр для очистки масла.

Термоманометрическая система ТМС-З предназначена для контроля некоторых технологических параметров скважин, оборудованных УЭЦН (давление, температура, вибрация) и защиты погружных агрегатов от аномальных режимов работы (перегрев электродвигателя или снижение давления жидкости на приеме насоса ниже допустимого).

Система ТМС-З состоит из скважинного преобразователя, трансформирующего давление и температуру в частотно-манипулированный электрический сигнал, и наземного прибора, осуществляющего функции блока питания, усилителя-формирователя сигналов и устройства управления режимом работы погружным электронасосом по давлению и температуре.

Скважинный преобразователь давления и температуры (ПДТ) выполнен в виде герметичного цилиндрического контейнера, размещаемого в нижней части электродвигателя и подключенного к нулевой точке его статорной обмотки.

Наземный прибор, устанавливаемый в комплектное устройство ШГС, обеспечивает формирование сигналов на ее отключение и выключение насоса по давлению и температуре.

В качестве линии связи и энергопитания ПДТ используется силовая сеть питания погружного электродвигателя.

ГИДРОЗАЩИТА ПОГРУЖНЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ

Гидрозащита предназначена для предотвращения проникновения пластовой жидкости во внутреннюю полость электродвигателя, компенсации изменения объема масла во внутренней полости от температуры электродвигателя и передачи крутящего момента от вала электродвигателя к валу насоса.

Разработано два варианта конструкций гидрозащит для двигателей унифицированной серии:

  • § открытого типа - П92; ПК92; П114; ПК114 и
  • § закрытого типа - П92Д; ПК92Д; (с диафрагмой) П114Д; ПК114Д.

Гидрозащиту выпускают

  • § обычного и
  • § коррозионностойкого (буква К. - в обозначении) исполнений.

В обычном исполнении гидрозащита покрыта грунтовкой ФЛ-ОЗ-К ГОСТ 9109 - 81. В коррозионностойком исполнении гидрозащита имеет вал из К-монеля и покрыта эмалью ЭП-525, IV, 7/2 110 °С.

Основным типом гидрозащиты для комплектации ПЭД принята гидрозащита открытого типа. Гидрозащита открытого типа требует применения специальной барьерной жидкости плотностью до 2 г/см 3 , обладающей физико-химическими свойствами, которые исключают ее перемешивание с пластовой жидкостью скважины и маслом в полости электродвигателя.


Рис. 5. Гидрозащита открытого (а) и закрытого (б) типов:

А - верхняя камера; Б - нижняя камера; 1 - головка; 2 - верхний ниппель: 3 - корпус; 4 - средний ниппель; 5 - нижний ниппель; 6 - основание; 7 - вал; 8 - торцовое уплотнение; 9 - соединительная трубка; 10 - диафрагма

Конструкция гидрозащиты открытого типа представлена на рис. 5, а, закрытого типа - на рис. 5, б.

Верхняя камера заполнена барьерной жидкостью, нижняя - диэлектрическим маслом. Камеры сообщены трубкой. Изменения объемов жидкого диэлектрика в двигателе компенсируются за счет перетока барьерной жидкости в гидрозащите из одной камеры в другую.

В гидрозащитах закрытого типа применяются резиновые диафрагмы, их эластичность компенсирует изменение объема жидкого диэлектрика в двигателе.

В настоящее время функции станции управления выполняют комплектные устройства семейства «ЭЛЕКТОН».

УСТРОЙСТВА КОМПЛЕКТНЫЕ СЕРИИ «ЭЛЕКТОН 04»

Станция обеспечивает следующие защиты и регулирование их уставок:

  • 1) отключение и запрещение включения электродвигателя при напряжении питающей сети выше или ниже заданных значений;
  • 2) отключение и запрещение включения электродвигателя при превышении выбранной уставки дисбаланса напряжения питающей сети;
  • 3) отключение электродвигателя при превышении выбранной уставки дисбаланса токов электродвигателя;
  • 4) отключение электродвигателя при недогрузке по активной составляющей тока с выбором минимального тока фазы (по фактической загрузке). При этом уставка выбирается относительно номинального активного тока;
  • 5) отключение электродвигателя при перегрузке любой из фаз с выбором максимального тока фазы по регулируемой ампер-секундной характеристике посредством раздельного выбора желаемых уставок по току и времени перегрузки;
  • 6) отключение и запрещение включения электродвигателя при снижении сопротивления изоляции силовой цепи ниже заданного значения;
  • 7) запрещение включения электродвигателя при турбинном вращении с выбором допустимой частоты вращения;
  • 8) отключение электродвигателя по максимальной токовой защите (МТЗ);
  • 9) запрещение включения электродвигателя при восстановлении напряжения питающей сети с неправильным чередованием фаз;
  • 10) отключение электродвигателя по сигналу контактного манометра в зависимости от давления в трубопроводе;
  • 11) отключение электродвигателя при давлении на приеме насоса выше или ниже заданного значения (при подключении системы ТМС);
  • 12) отключение электродвигателя при температуре выше заданного значения (при подключении системы ТМС);
  • 13) отключение электродвигателя по логическому сигналу на дополнительном цифровом входе;
  • 14) предотвращение сброса защит, изменения режимов работы, включения - отключения защит и изменения уставок без ввода индивидуального пароля;

Станция обеспечивает следующие функции:

  • 1) включение и отключение электродвигателя либо в "ручном" режиме непосредственно оператором, либо в "автоматическом" режиме;
  • 2) работа по программе с отдельно задаваемыми временами работы и остановки;
  • 3) автоматическое включение электродвигателя с заданной задержкой времени после подачи напряжения питания, либо восстановлении напряжения питания в соответствии с нормой;
  • 4) регулируемая задержка отключения отдельно для каждой защиты (кроме МТЗ и защиты по низкому сопротивлению изоляции);
  • 5) регулируемая задержка активации защит сразу после пуска для каждой защиты (кроме МТЗ и защиты по низкому сопротивлению изоляции);
  • 6) регулируемая задержка АПВ отдельно после каждой защиты (кроме МТЗ, защит по низкому сопротивлению изоляции, по турбинному вращению и);
  • 7) возможность выбора режима с АПВ или с блокировкой АПВ после срабатывания отдельно каждой защиты (кроме МТЗ, защит по низкому сопротивлению изоляции и по турбинному вращению);
  • 8) возможность выбора активного и не активного состояния защит отдельно для каждой защиты;
  • 9) блокировка АПВ после отключения по защите от недогрузки при превышении заданного количества разрешенных повторных пусков за заданный интервал времени;
  • 10) блокировка АПВ после отключения по защите от перегрузки при превышении заданного количества разрешенных повторных пусков за заданный интервал времени;
  • 11) блокировка АПВ после отключения другими защитами (кроме защит от недогрузки) при превышении заданного количества разрешенных повторных пусков за заданный интервал времени;
  • 12) измерение текущего значения сопротивления изоляции силовой цепи в диапазоне 1кОм - 10 мОм;
  • 13) измерение текущего коэффициента мощности (cos);
  • 14) измерение текущего значения фактической загрузки двигателя;
  • 15) измерение текущего значения частоты вращения электродвигателя при турбинном вращении;
  • 16) определение порядка чередования фаз напряжения питающей сети (АВС или СВА);
  • 17) отображение в хронологическом порядке 63 последних изменений в состоянии насосной установки с указанием причины и времени включения или отключения электродвигателя;
  • 18) запись в реальном времени в блок памяти информации о причинах включения и отключения электродвигателя с регистрацией текущих линейных значений питающего напряжения, токов фаз электродвигателя, загрузки и сопротивления изоляции в момент отключения электродвигателя, в момент включения, через 5 секунд после включения и во время работы с двумя регулируемыми периодами записи. Накопленная информация может быть считана в портативный компьютер, блок съема информации БСИ либо передана в стандарте RS-232 или RS-485;
  • 19) сохранение заданных параметров работы и накопленной информации при отсутствии напряжения питания;
  • 20) отображение общей наработки насосной установки;
  • 21) отображение общего числа пусков насосной установки;
  • 22) отображение текущих значений времени и даты;
  • 23) световая индикация о состоянии станции ("СТОП", "ОЖИДАНИЕ", "РАБОТА");
  • 24) подключение к станции геофизических и наладочных приборов с помощью розетки 220В.

Кроме того, станция обеспечивает отображение на буквенно-цифровом дисплее следующей информации:

  • 1) состояние установки с указанием причины, времени работы с момента последнего пуска или времени, оставшемся до пуска в минутах и секундах;
  • 2) текущее значение трех линейных питающих напряжений в вольтах;
  • 3) текущее значение токов трех фаз электродвигателя в амперах;
  • 4) текущие значения дисбалансов напряжений и токов в %;
  • 5) текущее значение сопротивления изоляции в кОм;
  • 6) текущее значение коэффициента мощности (cos);
  • 7) текущее значение загрузки двигателя в % от номинального активного тока;
  • 8) текущее значение частоты вращения двигателя при турбинном вращении в Гц;
  • 9) текущее значение давления на приеме насоса во введенных единицах (при подключении системы ТМС);
  • 10) текущее значение температуры двигателя во введенных единицах (при подключении системы ТМС);
  • 11) порядок чередования фаз напряжения питающей сети (АВС или СВА);
  • 12) значение всех установленных параметров и текущих режимов работы.

Устройство БСИ-01 (блок считывания информации) предназначено для съёма и хранения информации с контроллера «Электон», а также для передачи ее на стационарный компьютер. Емкость памяти позволяет хранить информацию с 63 контроллеров. Питание БСИ-01 осуществляется от сетевого адаптера (в контроллерах с зав. №1000 и выше питание блока предусмотрено через разъем RS-232).

Преобразователи частоты семейства ПЧ-ТТПТ-ХХХ-380-50-1-УХЛ1 «Электон 05» предназначены для регулирования частоты вращения трехфазных асинхронных двигателей (АД) с короткозамкнутым или фазным ротором распространенных общепромышленных серий.

СУ обеспечивает работу привода в нескольких режимах:

  • а) ручное управление частотой вращения АД;
  • б) режим самозапуска СУ после восстановления питания;
  • в) плавный разгон асинхронного электродвигателя (АД) с заданным темпом;
  • г) разгон по предельным (заданным) значениям токов фаз АД;
  • д) плавное торможение АД;
  • е) реверсирование АД;
  • ж) торможение АД по предельному значению напряжения в звене постоянного тока;
  • з) режим работы по программе
  • и) считывание телеметрической информации по каналу RS-232;
  • к) работа в режиме ослабления поля при скоростях вращения выше номинальной.

Выходная частота - 1...75 Гц ±0,1 %.

Ток перегрузки - 125 % от номинального в течение 5 минут при времени усреднения 10 минут (режим №2 в соответствии с ГОСТ 24607-88).

Показатели надежности.

Средняя наработка на отказ СУ должна быть не менее 8000 часов.

Дисплей частотного преобразователя представлен на рисунке 6.


Рисунок № 6.

Силовая часть всех СУ построена по единой схеме и представляет собой двухступенчатый преобразователь энергии трехфазного тока сети в энергию трехфазного тока, с регулируемыми напряжением и частотой.

Сетевое напряжение преобразуется в постоянное с помощью выпрямителя (управляемого на тиристорах или неуправляемого на диодах) и фильтруется с помощью LC-фильтра. Постоянное напряжение преобразуется автономным инвертором напряжения (АИН) в трехфазное для питания асинхронного двигателя.

Автономный инвентор напряжения выполнен на основе биполярных транзисторов с изолированным затвором - IGBT , что позволяет применить достаточно гибкий алгоритм управления трехфазным мостом - широтно-импульсную модуляцию (ШИМ). Управляя напряжением на затворах IGBT моста АИН, можно получить на выходах U, V, W трехфазную систему синусоидальных токов с регулируемой частотой и амплитудой.

Импульсы управления IGBT вырабатываются системой управления и поступают на плату драйверов, где формируются двухполярные мощные сигналы для управления затворами транзисторов.

ПОДСТАНЦИИ ТРАНСФОРМАТОРНЫЕ КОМПЛЕКТНЫЕ СЕРИИ КТППНКС.

КТППНКС предназначены для электроснабжения, управления и защиты четырех центробежных электронасосов (ЭЦН) с электродвигателями мощностью 16 - 125 кВт для добычи нефти из кустов скважин, питания до четырех электродвигателей станков-качалок и передвижных токоприемников при выполнении ремонтных работ.

Погружная кабельная линия.

Для подвода электроэнергии к электродвигателю установки погружного насоса применяется кабельная линия, состоящая из основного питающего кабеля и срощенного с ним удлинителя с муфтой кабельного ввода, обеспечивающей герметическое присоединение кабельной линии к электродвигателю. Состав кабельной линии и методы сращивания с удлинителем представлены на рисунках №№ 7, 8 и 9.

В зависимости от назначения в кабельную линию могут входить:

в качестве основного кабеля - круглые кабели марок КПБК, КТЭБК, КФСБК или плоские кабели марок КПБП, КТЭБ, КФСБ;

в качестве удлинителя - плоские кабели марок КПБП или КФСБ;

муфта кабельного ввода круглого типа. Кабели марок КПБК и КПБП с полиэтиленовой изоляцией предназначены для эксплуатации при температурах окружающей среды до +90 °С.

Кабели КПБК и КПБП состоят из медных токопроводящих жил, изолированных в два слоя полиэтиленом высокой плотности и скрученных между собой (в кабелях КПБК) или уложенных в одной плоскости (в кабелях КПБП), а также из подушки и брони.

Кабели марок КТЭБК и КТЭБ с изоляцией из термоэластопласта предназначены для эксплуатации при температурах окружающей среды до +110 °С. Кабели КТЭБК и КТЭБ состоят из медных, изолированных полиамидно-фторопластовой пленкой токопроводящих жил в изоляции и оболочках из термоэластопласта и скрученных между собой (в кабелях КТЭБК) или уложенных в одной плоскости (в кабелях КТЭБ), а также из подушки и брони.

Кабели марок КФСКБ и КФСБ с фторопластовой изоляцией предназначены для эксплуатации при температурах окружающей среды до +160 °С.

Кабели КФСБК и КФСБ состоят из медных, изолированных полиамидно-фторопластовой пленкой токопроводящих жил в изоляции из фторопласта и оболочках из свинца и скрученных между собой (в кабелях КФСБК) или уложенных в одной плоскости (в кабелях КФСБ), а также из подушки и брони.

Рисунки № 8 и 9.

К наземному оборудованию относится станция управления, автотрансформатор, барабан с электрокабелем и устьевая арматура.

Электрооборудование, в зависимости от схемы токоподвода, включает в себя либо комплектную трансформаторную подстанцию для погружных насосов (КТППН), либо трансформаторную подстанцию (ТП), станцию управления и трансформатор.

Электроэнергия от трансформатора (или от КТППН) к погружному электродвигателю подается по кабельной линии, которая состоит из наземного питающего кабеля и основного кабеля с удлинителем. Соединение наземного кабеля с основным кабелем кабельной линии осуществляется в клеммной коробке, которая устанавливается на расстояние 3-5 метров от устья скважины.

Площадка для размещения наземного электрооборудования защищается от затопления в паводковый период и очищается от снега в зимний период и должна иметь подъезды, позволяющие свободно монтировать и демонтировать оборудование. Ответственность за рабочее состояние площадок и подъездов к ним возлагается на ЦДНГ.

Станция управления

При помощи станции управления осуществляют ручное управление двигателем, автоматическое отключение агрегата при прекращении подачи жидкости, нулевую защиту, защиту от перегрузки и отключения агрегата при коротких замыканиях. Во время работы агрегата центробежный ток насос всасывает жидкость через фильтр, установленный на приеме насоса и нагнетает ее по насосам трубам на поверхность. В зависимости от напора, т.е. высоты подъема жидкости, применяют насосы с различным числом ступеней. Над насосом устанавливают обратный и сливной клапан. Обратный клапан используется для поддерживания в НКТ, что облегчает пуск двигателя и контроль его работы после пуска. Во время работы обратный клапан находится в открытом положении под действием давления снизу. Сливной клапан устанавливают над обратным, и используется для слива жидкости из НКТ подъеме их на поверхность.

Автотрансформатор

Трансформатор (автотрансформатор) используют для повышения напряжения тока от 380 (промысловая сеть) до 400-2000 В.

У трансформаторов предусмотрено масляное охлаждение. Они предназначены для работы на открытом воздухе. На высокой стороне обмоток трансформаторов выполняется по пятьдесят ответвлений для подачи оптимального напряжения на электродвигатель в зависимости от длины кабеля, загрузки электродвигателя и напряжения сети.

Переключение отпаек производится при полностью отключенном трансформаторе.

Трансформатор состоит из магнитопровода, обмоток высокого ВН и НН напряжения, бака, крышки с вводами и расширителя с воздухосушителем.

Бак трансформатора заполняется трансформаторным маслом, имеющим пробивное напряжение не ниже 40кВт.

На трансформаторах мощностью 100 - 200кВт установлен термосифонный фильтр для очистки трансформаторного масла от продуктов старения.

На крышке бака смонтирован:

Привод переключателя ответвлений обмоток ВН (один или два);

Ртутный термометр для измерения температуры верхних слоев масла;

Съемные ввода ВН и НН, допускающие замену изоляторов без подъема извлекаемой части;

Расширитель с маслоуказателем и воздухоосушителем;

Металлический короб для предохранения вводов от попадания пыли и влаги.

Воздухоосушитель с масляным затвором предназначен для удаления влаги и очистки от промышленных загрязнений воздуха, поступающего в трансформатор при температурных колебаниях уровня масла

Устьевая арматура

Устьевая арматура предназначена для отвода продукции из скважины в выкидную линию и герметизации межтрубного пространства.

Устьевая арматура скважины, подготовленной к запуску УЭЦН, оборудуется манометрами, обратным клапаном на линии, соединяющей затрубное пространство с выкидом, штуцерной камерой {при технологической целесообразности) и патрубком для исследования. Ответственность за выполнение этого пункта несёт ЦДНГ.

Устьевая арматура скважины, кроме функций выполняемых при всех способах добычи должна обеспечить герметичность перемещающегося в ней возвратно-поступательно полированного штока. Последний является механической связью между колонной штанг и головкой балансира СК.

Устьевая арматура скважины, манифольды и выкидные линии, имеющие сложную конфигурацию, усложняют гидродинамику потока. Находящееся на поверхности прискважинное оборудование сравнительно доступно и относительно просто очищается от отложений, в основном, термическими методами.

Устьевая арматура скважин, через которые осуществляется закачка воды в пласт, подвергается гидравлическому испытанию в порядке, установленном для фонтанной арматуры.

Подземное оборудование УЭЦН

К подземному оборудованию относится НКТ, насосный агрегат и эклектический бронированный кабель.

Центробежные насосы для откачки жидкости из скважины принципиально не отличаются от обычных центробежных насосов, используемых для перекачки жидкостей на поверхности земли. Однако малые радиальные размеры, обусловленные диаметром обсадных колонн, в которые спускаются центробежные насосы, практически неограниченные осевые размеры, необходимость преодоления высоких напоров и работа насоса в погруженном состоянии привели к созданию центробежных насосных агрегатов специфического конструктивного исполнения. Внешне они ничем не отличаются от трубы, но внутренняя полость такой трубы содержит большое число сложных деталей, требующих совершенной технологии изготовления.

Погружные центробежные электронасосы (ПЦЭН) - это многоступенчатые центробежные насосы с числом ступеней в одном блоке до 120, приводимые во вращение погружным электродвигателем специальной конструкции (ПЭД). Электродвигатель питается с поверхности электроэнергией, подводимой по кабелю от повышающего автотрансформатора или трансформатора через станцию управления, в которой сосредоточена вся контрольно-измерительная аппаратура и автоматика. ПЦЭН опускается в скважину под расчетный динамический уровень обычно на 150 - 300 м. Жидкость подается по НКТ, к внешней стороне которых прикреплен специальными поясками электрокабель. В насосном агрегате между самим насосом и электродвигателем имеется промежуточное звено, называемое протектором или гидрозащитой. Установка ПЦЭН (рисунок 3) включает маслозаполненный электродвигатель ПЭД 1; звено гидрозащиты или протектор 2; приемную сетку насоса для забора жидкости 3; многоступенчатый центробежный насос ПЦЭН 4; НКТ 5; бронированный трехжильный электрокабель 6; пояски для крепления кабеля к НКТ 7; устьевую арматуру 8; барабан для намотки кабеля при спуско-подъемных работах и хранения некоторого запаса кабеля 9; трансформатор или автотрансформатор 10; станцию управления с автоматикой 11 и компенсатор 12.

Насос, протектор и электродвигатель являются отдельными узлами, соединяемыми болтовыми шпильками. Концы валов имеют шлицевые соединения, которые стыкуются при сборке всей установки. При необходимости подъема жидкости с больших глубин секции ПЦЭН соединяются друг с другом так, что общее число ступеней достигает 400. Всасываемая насосом жидкость последовательно проходит все ступени и покидает насос с напором, равным внешнему гидравлическому сопротивлению.

Рисунок 3 - Общая схема оборудования скважины установкой погружного центробежного насоса

УПЦЭН отличаются малой металлоемкостью, широким диапазоном рабочих характеристик, как по напору, так и по расходу, достаточно высоким к. п. д., возможностью откачки больших количеств жидкости и большим межремонтным периодом. Следует напомнить, что средняя по России подача по жидкости одной УПЦЭН составляет 114,7 т/сут, а УШСН - 14,1 т/сут.

Все насосы делятся на две основные группы; обычного и износостойкого исполнения. Подавляющая часть действующего фонда насосов (около 95 %) - обычного исполнения.

Насосы износостойкого исполнения предназначены для работы в скважинах, в продукции которых имеется небольшое количество песка и других механических примесей (до 1 % по массе). По поперечным размерам все насосы делятся на 3 условные группы: 5; 5А и 6, что означает номинальный диаметр обсадной колонны, (в дюймах), в которую может быть спущен данный насос.

Группа 5 имеет наружный диаметр корпуса 92 мм, группа 5А - 103 мм и группа б - 114 мм. Частота вращения вала насосов соответствует частоте переменного тока в электросети. В России это частота - 50 Гц, что дает синхронную скорость (для двухполюсной машины) 3000 мин-1. В шифре ПЦЭН заложены их основные номинальные параметры, такие как подача и напор при работе на оптимальном режиме. Например, ЭЦН5-40-950 означает центробежный электронасос группы 5 с подачей 40 м3/сут (по воде) и напором 950 м. ЭЦН5А-360-600 означает насос группы 5А с подачей 360 м3/сут и напором 600 м.

Рисунок 4 - Типичная характеристика погружного центробежного насоса

В шифре насосов износостойкого исполнения имеется буква И, означающая износостойкость. В них рабочие колеса изготовляются не из металла, а из полиамидной смолы (П-68). В корпусе насоса примерно через каждые 20 ступеней устанавливаются промежуточные резино-металлические центрирующие вал подшипники, в результате чего насос износостойкого исполнения имеет меньше ступеней и соответственно напор.

Торцовые опоры рабочих колес не чугунные, а в виде запрессованных колец из закаленной стали 40Х. Вместо текстолитовых опорных шайб между рабочими колесами и направляющими аппаратами применяются шайбы из маслостойкой резины.

Все типы насосов имеют паспортную рабочую характеристику в виде кривых зависимостей Н(Q) (напор, подача), з(Q) (к. п. д., подача), N(Q) (потребляемая мощность, подача). Обычно эти зависимости даются в диапазоне рабочих значений расходов или в несколько большем интервале (рис. 11.2).

Всякий центробежный насос, в том числе и ПЦЭН, может работать при закрытой выкидной задвижке (точка А: Q = 0; Н = Нmax) и без противодавления на выкиде (точка В: Q = Qmax; H = 0). Поскольку полезная работа насоса пропорциональна произведению подачи на напор, то для этих двух крайних режимов работы насоса полезная работа будет равна нулю, а следовательно, и к. п. д. будет равен нулю. При определенном соотношении (Q и Н, обусловленном минимальными внутренними потерями насоса, к. п. д. достигает максимального значения, равного примерно 0,5 - 0,6. Обычно насосы с малой подачей и малым диаметром рабочих колес, а также с большим числом ступеней имеют пониженный к. п. д. Подача и напор, соответствующие максимальному к. п. д., называются оптимальным режимом работы насоса. Зависимость з(Q) около своего максимума уменьшается плавно, поэтому вполне допустима работа ПЦЭН при режимах, отличающихся от оптимального в ту и другую сторону на некоторую величину. Пределы этих отклонений завесят от конкретной характеристики ПЦЭН и должны соответствовать разумному снижению к. п. Д. насоса (на 3 - 5%). Это обусловливает целую область возможных режимов работы ПЦЭН, которая называется рекомендованной областью (см. рис. 11.2, штриховка).

Подбор насоса к скважинам по существу сводится к выбору такого типоразмера ПЦЭН, чтобы он, будучи спущен в скважину, работал в условиях оптимального или рекомендованного режима при откачке заданного дебита скважины с данной глубины.

Выпускаемые в настоящее время насосы рассчитаны на номинальные расходы от 40 (ЭЦН5-40-950) до 500 м3/сут (ЭЦН6-500-750) и напоры от 450 м (ЭЦН6-500-450) до 1500 м (ЭЦН6-100-1500). Кроме того, имеются насосы специального назначения, например для закачки воды в пласты. Эти насосы имеют подачу до 3000 м3/сут и напоры до 1200 м.

Напор, который может преодолеть насос, прямо пропорционален числу ступеней. Развиваемый одной ступенью при оптимальном режиме работы, он зависит, в частности, от размеров рабочего колеса, которые зависят в свою очередь от радиальных габаритов насоса. При внешнем диаметре корпуса насоса 92 мм средний напор, развиваемый одной ступенью (при работе на воде), равен 3,86 м при колебаниях от 3,69 до 4,2 м. При внешнем диаметре 114 мм средний напор 5,76 м при колебаниях от 5,03 до 6,84 м.

Насосный агрегат состоит из насоса (рисунок 4, а), узла гидрозащиты (рисунок 4, 6), погружного электродвигателя ПЭД (рисунок 4, в), компенсатора (рисунок 4, г), присоединяемого к нижней части ПЭДа.

Насос состоит из следующих деталей: головки 1 с шаровым обратным клапаном для предупреждения слива жидкости из НКТ при остановках; верхней опорной пяты скольжения 2, воспринимающей частично осевую нагрузку из-за разности давлений на входе и выкиде насоса; верхнего подшипника скольжения 3, центрирующего верхний конец вала; корпуса насоса 4; направляющих аппаратов 5, которые опираются друг на друга и удерживаются от вращения общей стяжкой в корпусе 4; рабочих колес 6; вала насоса 7, имеющего продольную шпонку, на которой насаживаются рабочие колеса со скользящей посадкой. Вал проходит и через направляющий аппарат каждой ступени и центрируется в нем втулкой рабочего колеса, как в подшипнике; нижнего подшипника скольжения 8; основания 9, закрытого приемной сеткой и имеющего в верхней части круглые наклонные отверстия для подвода жидкости к нижнему рабочему колесу; концевого подшипника скольжения 10. В насосах ранних конструкций, имеющихся еще в эксплуатации, устройство нижней части иное. На всей длине основания 9 размещается сальник из свинцово-графитовых колец, разделяющий приемную часть насоса и внутренние полости двигателя и гидрозащиты. Ниже сальника смонтирован трехрядный радиально-упорный шариковый подшипник, смазываемый густым маслом, находящимся под избыточным, по отношению к внешнему, некоторым давлением (0,01 - 0,2 МПа).

Рисунок 4 - Устройство погружного центробежного агрегата

а - центробежный насос; б - узел гидрозащиты; в - погружной электродвнгателъ; г - компенсатор

В современных конструкциях ЭЦН в узле гидрозащиты не имеется избыточного давления, поэтому утечки жидкого трансформаторного масла, которым заполнен ПЭД, меньше, и необходимость в свинцово-графитовом сальнике отпала.

Полости двигателя и приемной части разделяет простым торцовым уплотнением, давления по обе стороны которого одинаковые. Длина корпуса насоса обычно не превьшает 5,5 м. Когда же нужное число ступеней (в насосах, развивающих большие напоры) разместить в одном корпусе не удается, их размещают в два или три отдельных корпуса, составляющих самостоятельные секции одного насоса, которые состыковываются вместе при спуске насоса в скважину

Узел гидрозащиты - самостоятельный узел, присоединяемый к ПЦЭН болтовым соединением (на рисунок 4 узел, как и сам ПЦЭН, показан с транспортировочными заглушками, герметизирующими торцы узлов)

Верхний конец вала 1 соединяется шлицевой муфтой с нижним концом вала насоса. Легкое торцевое уплотнение 2 разделяет верхнюю полость, в которой может быть скважинная жидкость, от полости ниже уплотнения, которая заполнена трансформаторным маслом, находящимся, как и скважинная жидкость, под давлением, равным давлению на глубине погружения насоса. Ниже торцевого уплотнения 2 располагается подшипник скользящего трения, а еще ниже - узел 3 - опорная пята, воспринимающая осевое усилие вала насоса. Опорная пята скольжения 3 работает в жидком трансформаторном масле.

Ниже размещается второе торцевое уплотнение 4 для более надежной герметизации двигателя. Оно конструктивно не отличается от первого. Под ним располагается резиновый мешок 5 в корпусе 6. Мешок герметично разделяет две полости: внутреннюю полость мешка, заполненного трансформаторным маслом, и полость между корпусом 6 и самим мешком, в которую имеет доступ внешняя скважинная жидкость через обратный клапан 7.

Скважинная жидкость через клапан 7 проникает в полость корпуса 6 и сжимает резиновый мешок с маслом до давления, равного внешнему. Жидкое масло по зазорам вдоль вала проникает к торцевым уплотнениям и вниз к ПЭДу.

Разработаны две конструкции устройств гидрозащиты. Гидрозащита ГД отличается от описанной гидрозащиты Г наличием на валу малой турбинки, создающей повышенное давление жидкого масла во внутренней полости резинового мешка 5.

Внешняя полость между корпусом 6 и мешком 5 заполняется густым маслом, питающим шариковый радиально-упорный подшипник ПЦЭН прежней конструкции. Таким образом, узел гидрозащиты ГД усовершенствованной конструкции пригоден для использования в комплекте с широко распространенными на промыслах ПЦЭН прежних типов. Ранее применялась гидрозащита, так называемый протектор поршневого типа, в которой избыточное давление на масло создавалось подпружиненным поршнем. Новые конструкции ГД и Г оказались более надежными и долговечными. Температурные изменения объема масла при его нагревании или охлаждении компенсируются с помощью присоединения к нижней части ПЭДа резинового мешка - компенсатора.

Для привода ПЦЭН служат специальные вертикальные асинхронные маслозаполненные двухполюсные электродвигатели (ПЭД). Электродвигатели насоса делятся на 3 группы: 5; 5А и 6.

Поскольку вдоль корпуса электродвигателя, в отличие от насоса, электрокабель не проходит, диаметральные размеры ПЭДов названных групп несколько больше, чем у насосов, а именно: группа 5 имеет максимальный диаметр 103 мм, группа 5А - 117 мм и группа 6 - 123 мм.

В маркировку ПЭД входит номинальная мощность (кВт) и диаметр; например, ПЭД65-117 означает: погружной электродвигатель мощностью 65 кВт с диаметром корпуса 117 мм, т. е. входящий в группу 5А.

Малые допустимые диаметры и большие мощности (до 125 кВт) вынуждают делать двигатели большой длины - до 8 м, а иногда и больше. Верхняя часть ПЭДа соединяется с нижней частью узла гидрозащиты с помощью болтовых шпилек. Валы стыкуются шлицевыми муфтами.

Верхний конец вала ПЭДа подвешен на пяте скольжения 1, работающей в масле. Ниже размещается узел кабельного ввода 2. Обычно этот узел представляет собой штекерный кабельный разъем. Это одно из самых уязвимых мест в насосе, из-за нарушения изоляции которого установки выходят из строя и требуют подъема; 3 - выводные провода обмотки статора; 4 - верхний радиальный подшипник скользящего трения; 5 - разрез торцевых концов обмотки статора; 6 - секция статора, набранная из штампованных пластин трансформаторного железа с пазами для продергивания проводов статора. Секции статора разделены друг от друга немагнитными пакетами, в которых укрепляются радиальные подшипники 7 вала электродвигателя 8. Нижний конец вала 8 центрируется нижним радиальным подшипником скользящего трения 9. Ротор ПЭДа также состоит из секций, собранных на валу двигателя из штампованных пластин трансформаторного железа. В пазы ротора типа беличьего колеса вставлены алюминиевые стержни, закороченные токопроводящими кольцами, с обеих сторон секции. Между секциями вал двигателя центрируется в подшипниках 7. Через всю длину вала двигателя проходит отверстие диаметром 6 - 8 мм для прохождения масла из нижней полости в верхнюю. Вдоль всего статора также имеется паз, через который может циркулировать масло. Ротор вращается в жидком трансформаторном масле с высокими изолирующими свойствами. В нижней части ПЭДа имеется сетчатый масляный фильтр 10. Головка 1 компенсатора (см. рис. 11.3, г), присоединяется к нижнему концу ПЭДа; перепускной клапан 2 служит для заполнения системы маслом. Защитный кожух 4 в нижней части имеет отверстия для передачи внешнего давления жидкости на эластичный элемент 3. При охлаждении масла его объем уменьшается и скважинная жидкость через отверстия заходит в пространство между мешком 3 и кожухом 4. При нагревании мешок расширяется, и жидкость через те же отверстия выходит из кожуха.

ПЭДы, применяемые для эксплуатации нефтедобывающих скважин, имеют мощности обычно от 10 до 125 кВт.

Для поддержания пластового давления применяются специальные погружные насосные агрегаты, укомплектованные ПЭДами мощностью 500 кВт. Напряжение питающего тока в ПЭДах колеблется от 350 до 2000 В. При высоких напряжениях удается пропорционально уменьшить ток при передаче той же мощности, а это позволяет уменьшить сечение токопроводящих жил кабеля, а следовательно, поперечные габариты установки. Это особенно важно при больших мощностях электродвигателя. Скольжение ротора ПЭДа номинальное - от 4 до 8,5 %, к. п. д. - от 73 до 84 %, допустимые температуры окружающей среды - до 100 °С.

При работе ПЭДа выделяется много теплоты, поэтому для нормальной работы двигателя требуется охлаждение. Такое охлаждение создается за счет непрерывного протекания пластовой жидкости по кольцевому зазору между корпусом электродвигателя и обсадной колонной. По этой причине отложения парафина в НКТ при работе насосов всегда значительно меньше, чем при других способах эксплуатации.

В производственных условиях случается временное обесточивание силовых линий из-за грозы, обрыва проводов, из-за их обледенения и пр. Это вызывает остановку УПЦЭН. При этом под влиянием стекающего из НКТ через насос столба жидкости вал насоса и статор начинают вращаться в обратном направлении. Если в этот момент подача электроэнергии будет восстановлена, то ПЭД начнет вращаться в прямом направлении, преодолевая силу инерции столба жидкости и вращающихся масс.

Пусковые токи при этом могут превысить допустимые пределы, и установка выйдет из строя. Чтобы этого не случилось, в выкидной части ПЦЭН устанавливается шаровой обратный клапан, препятствующий сливу жидкости из НКТ.

Обратный клапан обычно размещается в головке насоса. Наличие обратного клапана осложняет подъем НКТ при ремонтных работах, так как в этом случае трубы поднимают и развинчивают с жидкостью. Кроме того, это опасно в пожарном отношении. Для предотвращения таких явлений выше обратного клапана в специальной муфте делается сливной клапан. В принципе сливной клапан - это муфта, в боковую стенку которой вставлена горизонтально короткая бронзовая трубка, запаянная с внутреннего конца. Перед подъемом в НКТ бросается металлический короткий дротик. От удара дротика бронзовая трубка отламывается, в результате чего боковое отверстие в муфте открывается и жидкость из НКТ сливается.

Разработаны и другие приспособления для слива жидкости, устанавливаемые над обратным клапаном ПЦЭН. К ним относятся так называемые суфлеры, позволяющие измерять межтрубное давление на глубине спуска насоса скважинным манометром, спускаемым в НКТ, и устанавливающие сообщение межтрубного пространства с измерительной полостью манометра.

Следует заметить, что двигатели чувствительны к системе охлаждения, которая создается потоком жидкости между обсадной колонной и корпусом ПЭДа. Скорость этого потока и качество жидкости влияют на температурный режим ПЭДа. Известно, что вода имеет теплоемкость 4,1868 кДж/кг-°С, тогда как чистая нефть 1,675 кДж/кг-°С. Поэтому при откачке обводненной продукции скважины условия охлаждения ПЭДа лучше, чем при откачке чистой нефти, а его перегрев приводит к нарушению изоляции и выходу двигателя из строя. Поэтому изоляционные качества применяемых материалов влияют на длительность работы установки. Известно, что термостойкость некоторой изоляции, применяемой для обмоток двигателя, доведена уже до 180 °С, а рабочие температуры до 150 °С. Для контроля за температурой разработаны простые электрические температурные датчики, передающие на станцию управления информацию о температуре ПЭДа по силовому электрическому кабелю без применения дополнительной жилы. Аналогичные устройства имеются для передачи на поверхность постоянной информации о давлении на приеме насоса. При аварийных состояниях станция управления автоматически отключает ПЭД.

ПЭД питается электроэнергией по трехжильному кабелю, спускаемому в скважину параллельно с НКТ. Кабель крепится к внешней поверхности НКТ металлическими поясками по два на каждую трубу. Кабель работает в тяжелых условиях. Верхняя его часть находится в газовой среде, иногда под значительным давлением, нижняя - в нефти и подвергается еще большему давлению. При спуске и подъеме насоса, особенно в искривленных скважинах, кабель подвергается сильным механическим воздействиям (прижимы, трение, заклинивание между колонной и НКТ и т. д.). По кабелю передается электроэнергия при высоких напряжениях. Использование высоковольтных двигателей позволяет уменьшить ток и, следовательно, диаметр кабеля. Однако кабель для питания высоковольтного ПЭДа должен обладать и более надежной, а иногда и более толстой изоляцией. Все кабели, применяемые для УПЦЭН, сверху покрыты эластичной стальной оцинкованной лентой для защиты от механических повреждений. Необходимость размещения кабеля по наружной поверхности ПЦЭН уменьшает габариты последнего. Поэтому вдоль насоса укладывается плоский кабель, имеющий толщину примерно в 2 раза меньше, чем диаметр круглого, при одинаковых сечениях токопроводящих жил.

Все кабели, применяемые для УПЦЭН, делятся на круглые и плоские. Круглые кабели имеют резиновую (нефтестойкая резина) или полиэтиленовую изоляцию, что отображено в шифре: КРБК означает кабель резиновый бронированный круглый или КРБП - кабель резиновый бронированный плоский. При использовании полиэтиленовой изоляции в шифре вместо буквы Р пишется П: КПБК - для круглого кабеля и КПБП - для плоского.

Круглый кабель крепится к НКТ, а плоский - только к нижним трубам колонны НКТ и к насосу. Переход от круглого кабеля к плоскому сращивается методом горячей вулканизации в специальных прессформах и при недоброкачественном выполнении такой сростки может служить источником нарушения изоляции и отказов. В последнее время переходят только к плоским кабелям, идущим от ПЭДа вдоль колонны НКТ до станции управления. Однако изготовление таких кабелей сложнее, чем круглых (табл. 11.1).

Имеются еще некоторые разновидности кабелей с полиэтиленовой изоляцией, не упомянутые в таблице. Кабели с полиэтиленовой изоляцией на 26 - 35 % легче кабелей с резиновой изоляцией. Кабели с резиновой изоляцией предназначены для использования при номинальном напряжении электрического тока не более 1100 В, при температурах окружающей среды до 90 °С и давлении до 1 МПа. Кабели с полиэтиленовой изоляцией могут работать при напряжении до 2300 В, температуре до 120 °С и давлении до 2 МПа. Эти кабели обладают большей устойчивостью против воздействия газа и высокого давления.

Все кабели имеют броню из волнистой оцинкованной стальной ленты, что придает им нужную прочность.

Первичные обмотки трехфазных трансформаторов и автотрансформаторов всегда рассчитаны на напряжение промысловой электросети, т. е. на 380 В, к которой они и подсоединяются через станции управления. Вторичные обмотки рассчитаны на рабочее напряжение соответствующего двигателя, с которым они связаны кабелем. Эти рабочие напряжения в различных ПЭДах изменяются от 350В (ПЭД10-103) до 2000 В (ПЭД65-117; ПЭД125-138). Для компенсации падения напряжения в кабеле от вторичной обмотки делается 6 отводов (в одном типе трансформатора 8 отводов), позволяющих регулировать напряжение на концах вторичной обмотки с помощью перестановки перемычек. Перестановка перемычки на одну ступень повышает напряжение на 30 - 60 В в зависимости от типа трансформатора.

Все трансформаторы и автотрансформаторы немаслозаполненные с воздушным охлаждением закрыты металлическим кожухом и предназначены для установки в укрытом месте. Они комплектуются с подземной установкой, поэтому их параметры соответствуют данному ПЭДу.

В последнее время трансформаторы находят более широкое распространение, так как это позволяет непрерывно контролировать сопротивление вторичной обмотки трансформатора, кабеля и статорной обмотки ПЭДа. При уменьшении сопротивления изоляции до установленной величины (30 кОм) установка автоматически отключается.

При автотрансформаторах, имеющих прямую электрическую связь между первичной и вторичной обмотками, такого контроля изоляции осуществлять нельзя.

Трансформаторы и автотрансформаторы имеют к. п. д. около 98 - 98,5 %. Масса их в зависимости от мощности колеблется от 280 до 1240 кг, габариты от 1060 х 420 х 800 до 1550 х 690 х 1200 мм.

Работа УПЦЭН управляется станцией управления ПГХ5071 или ПГХ5072. Причем станция управления ПГХ5071 применяется при автотрансформаторном питании ПЭДа, а ПГХ5072 - при трансформаторном. Станции ПГХ5071 обеспечивают мгновенное отключение установки при замыкании токоведущих элементов на землю. Обе станции управления обеспечивают следующие возможности контроля и управления работой УПЦЭН.

1. Ручное и автоматическое (дистанционное) включение и отключение установки.

2. Автоматическое включение установки в режиме самозапуска после восстановления подачи напряжения в промысловой сети.

3. Автоматическую работу установки на периодическом режиме (откачка, накопление) по установленной программе с суммарным временем 24 ч.

4. Автоматическое включение и отключение установки в зависимости от давления в выкидном коллекторе при автоматизированных системах группового сбора нефти и газа.

5. Мгновенное отключение установки при коротких замыканиях и при перегрузках по силе тока на 40%, превышающих нормальный рабочий ток.

6. Кратковременное отключение на время до 20 с при перегрузках ПЭДа на 20 % от номинала.

7. Кратковременное (20 с) отключение при срыве подачи жидкости в насос.

Двери шкафа станции управления имеют механическую блокировку с блоком рубильников. Имеется тенденция к переходу на бесконтактные, герметически закрытые станции управления с полупроводниковыми элементами, которые, как показал опыт их эксплуатации, более надежны, не подвержены воздействию пыли, влаги и осадков.

Станции управления предназначены для установки в помещениях сарайного типа или под навесом (в южных районах) при температуре окружающей среды от - 35 до +40 °С.

Масса станции около 160 кг. Габариты 1300 x 850 x 400 мм. В комплект поставки УПЦЭН входит барабан с кабелем, длина которого определяется заказчиком.

Во время эксплуатации скважины по технологическим причинам глубину подвески насоса приходится изменять. Чтобы не рубить и не наращивать кабель при таких изменениях подвески, длина кабеля берется по максимальной глубине подвески данного насоса и при меньших глубинах его излишек оставляется на барабане. Этот же барабан используется для намотки кабеля при подъеме ПЦЭН из скважин.

При постоянстве глубины подвески и стабильных условиях работы насоса конец кабеля заправляется в соединительную коробку, и необходимость в барабане отпадает. В таких случаях при ремонтах используют специальный барабан на транспортной тележке или на металлических санях с механическим приводом для постоянного и равномерного подтягивания извлекаемого из скважины кабеля и намотки его на барабан. При спуске насоса с такого барабана равномерно подается кабель. Барабан приводится в движение электроприводом с реверсом и фрикционом для предупреждения опасных натяжений. На нефтедобывающих предприятиях с большим числом УЭЦН используют специальный транспортировочный агрегат АТЭ-6 на базе грузового вездехода КаАЗ-255Б для перевозки кабельного барабана и другого электрооборудования, в том числе трансформатора, насоса, двигателя и узла гидрозащиты.

Для погрузки и разгрузки барабана агрегат снабжен откидными направлениями для накатывания барабана на платформу и лебедкой с тяговым усилием на канате 70 кН. На платформе имеется также гидрокран грузоподъемностью 7,5 кН при вылете стрелы 2,5 м. Кабель спущенного насосного агрегата пропускают через сальниковые уплотнения устья и герметизируют в нем с помощью специального разъемного герметизирующего фланца в устьевой крестовине.

Типичная арматура устья скважины, оборудованной для эксплуатации ПЦЭН (рисунок 5), состоит из крестовины 1, которая навинчивается на обсадную колонну.


Рисунок 5 - Арматура устья скважины, оборудованной ПЦЭН

В крестовине имеется разъемный вкладыш 2, воспринимающий нагрузку от НКТ. На вкладыш накладывается уплотнение из нефтестойкой резины 3, которое прижимается разъемным фланцем 5. Фланец 5 прижимается болтами к фланцу крестовины и герметизирует вывод кабеля 4.

Арматура предусматривает отвод затрубного газа через трубу 6 и обратный клапан 7. Арматура собирается из унифицированных узлов и запорных кранов. Она сравнительно просто перестраивается для оборудования устья при эксплуатации штанговыми насосами.